Pregled bibliografske jedinice broj: 30127
On construction of fourth order Chebyshev splines
On construction of fourth order Chebyshev splines // Mathematical communications, 4 (1999), 1; 83-92 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 30127 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On construction of fourth order Chebyshev splines
Autori
Rogina, Mladen
Izvornik
Mathematical communications (1331-0623) 4
(1999), 1;
83-92
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Chebyshev spline; B-spline; knot insertion; recurrence
Sažetak
It is an important fact that general families of Chebyshev and L-splines can be locally represented, i.e. there exists a basis of B-splines which spans the entire space. We develop a special technique to calculate with $4^{; m{;th};};$ order Chebyshev splines of minimum deficiency on nonuniform meshes, which leads to a numerically stable algorithm, at least in case one special Hermite interpolant can be constructed by stable explicit formulae . The algebraic derivation of the algorithm involved makes it possible to apply the construction to L-splines. The underlying idea is an Oslo type algorithm, combined with the known derivative formula for Chebyshev splines. We than show that weighted polynomial and tension spline spaces satisfy the conditions imposed, and show how to apply the above general techniques to obtain local representations.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Mladen Rogina
(autor)
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Math. Review
- Current Math. Publ.
- Math.Sci
- Zentarblatt fur Mathematik