Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 299084

Wavelet packets approach to blind separation of statistically dependent sources


Kopriva, Ivica; Seršić, Damir
Wavelet packets approach to blind separation of statistically dependent sources // Neurocomputing, 71 (2008), 7-9; 1642-1655 doi:10.1016/j.neucom.2007.04.002 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 299084 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Wavelet packets approach to blind separation of statistically dependent sources

Autori
Kopriva, Ivica ; Seršić, Damir

Izvornik
Neurocomputing (0925-2312) 71 (2008), 7-9; 1642-1655

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
subband decomposition; independent component analysis; wavelet packets; mutual information

Sažetak
Subband decomposition independent component analysis (SDICA) assumes that wide-band source signals can be dependent but some of their sub-components are independent. Thus, it extends applicability of standard independent component analysis (ICA) through the relaxation of the independence assumption. In this paper, firstly, we introduce novel wavelet packets (WP) based approach to SDICA obtaining adaptive subband decomposition of the wideband signals. Secondly, we introduce small cumulant based approximation of the mutual information as a criterion for the selection of the subband with the least dependent components. Although mutual information is estimated for measured signals only, we have provided a proof that shows that index of the subband with least dependent components of the measured signals will correspond with the index of the subband with least dependent components of the sources. Unlike in the case of the competing methods, we demonstrate consistent performance in terms of accuracy and robustness as well as computational efficiency of WP SDICA algorithm.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
036-0362214-1989 - Inteligentne metode obrade i analize slika (Lončarić, Sven, MZO ) ( CroRIS)
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Avatar Url Damir Seršić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi dx.doi.org

Citiraj ovu publikaciju:

Kopriva, Ivica; Seršić, Damir
Wavelet packets approach to blind separation of statistically dependent sources // Neurocomputing, 71 (2008), 7-9; 1642-1655 doi:10.1016/j.neucom.2007.04.002 (međunarodna recenzija, članak, znanstveni)
Kopriva, I. & Seršić, D. (2008) Wavelet packets approach to blind separation of statistically dependent sources. Neurocomputing, 71 (7-9), 1642-1655 doi:10.1016/j.neucom.2007.04.002.
@article{article, author = {Kopriva, Ivica and Ser\v{s}i\'{c}, Damir}, year = {2008}, pages = {1642-1655}, DOI = {10.1016/j.neucom.2007.04.002}, keywords = {subband decomposition, independent component analysis, wavelet packets, mutual information}, journal = {Neurocomputing}, doi = {10.1016/j.neucom.2007.04.002}, volume = {71}, number = {7-9}, issn = {0925-2312}, title = {Wavelet packets approach to blind separation of statistically dependent sources}, keyword = {subband decomposition, independent component analysis, wavelet packets, mutual information} }
@article{article, author = {Kopriva, Ivica and Ser\v{s}i\'{c}, Damir}, year = {2008}, pages = {1642-1655}, DOI = {10.1016/j.neucom.2007.04.002}, keywords = {subband decomposition, independent component analysis, wavelet packets, mutual information}, journal = {Neurocomputing}, doi = {10.1016/j.neucom.2007.04.002}, volume = {71}, number = {7-9}, issn = {0925-2312}, title = {Wavelet packets approach to blind separation of statistically dependent sources}, keyword = {subband decomposition, independent component analysis, wavelet packets, mutual information} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font