Pregled bibliografske jedinice broj: 29870
On Interpolation by Hermite Tension Splines of Arbitrary Order
On Interpolation by Hermite Tension Splines of Arbitrary Order // Approximation Theory IX: Computational Aspects / Chui, C. K., Schumaker L. L. (ur.).
Nashville (TN) : London: Vanderbilt Univ. Press, 1998. str. 213-221 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 29870 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Interpolation by Hermite Tension Splines of Arbitrary Order
Autori
Marušić, Miljenko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Approximation Theory IX: Computational Aspects
/ Chui, C. K., Schumaker L. L. - Nashville (TN) : London : Vanderbilt Univ. Press, 1998, 213-221
Skup
The ninth International Conference on Approximation Theory
Mjesto i datum
Nashville (TN), Sjedinjene Američke Države, 06.01.1998
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Interpolation; Splines; Asymptotic Expansions; Green's Functions
Sažetak
For a given partition $x_0<x_<ldots x_n$, a Hermite tension spline of order $2k$ is a function that on each subinterval $(x_i,x_{i+1}$ satisfies the differential equation $D^{2k-2}(D^2-p_i^2/h_i^2u-0$ ($h_i=x_{i+1}-x_i$ and $p_i$'s are nonnegative real constants) and the interpolatatory conditions $u^{(j)}(x_i)=f_i^j,j=0,ldotsk-1,i=0,ldots n$ for prescribed real values $f_i^j$. For $p_i=0$ a Hermite tesnion spline is a classical Hermite polynomial spline of order $2k$, whereas for $p_i
ightarrowinfty$ we obtain a Hermite polynomial spline of order $2k-2$. We discuss a behavior of such an interpolant, bounds for interpolation error and its behavior in the limit case when $p_i
ightarrowinfty$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Miljenko Marušić
(autor)