Pregled bibliografske jedinice broj: 298462
Inequalities for a unified family of Voigt functions in several variables
Inequalities for a unified family of Voigt functions in several variables // Russian Journal of Mathematical Physics, 14 (2007), 2; 194-200 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 298462 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Inequalities for a unified family of Voigt functions in several variables
Autori
Srivastava, Hari M. ; Poganj, Tibor
Izvornik
Russian Journal of Mathematical Physics (1061-9208) 14
(2007), 2;
194-200
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Inequality; Voigt function; incomplete Fox-Wright Psi function
Sažetak
The classical Voigt functions occur frequently in a wide variety of problems in astrophysical spectroscopy, emission, absorption and transfer of radiation in heated atmosphere, and plasma dispersion, and indeed also in the theory of neutron reactions. Here, in the present paper, by applying several known upper bounds for the first-kind Bessel function $J_\nu(x)$ given recently by (for example) Landau, Olenko and Krasikov, sharp bounding inequalities are obtained for the unified multivariable Voigt function $V_{;m, n};(x ; y)$ in terms of the confluent Fox-Wright function $_1\Psi_0$ and its incomplete variant $_1\psi_0$. Connections of the unified multivariable Voigt function $V_{;m, n};(x ; y)$ with other unifications and generalizations of the classical Voigt function are also briefly pointed out.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathemak
- Scopus
- MathSciNet