Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 292187

On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$


Poganj, Tibor
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$ // Advances in Inequalities for Special Functions / Cerone, Pietro ; Dragomir, Silvestru Sever (ur.).
New York (NY): Nova Science Publishers, 2008. str. 125-132


CROSBI ID: 292187 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$

Autori
Poganj, Tibor

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Advances in Inequalities for Special Functions

Urednik/ci
Cerone, Pietro ; Dragomir, Silvestru Sever

Izdavač
Nova Science Publishers

Grad
New York (NY)

Godina
2008

Raspon stranica
125-132

ISBN
1-60021-919-5

Ključne riječi
Bounding inequality, Jacobi $\theta$, Weierstrass invariants $\mathfrak g_2, \mathfrak g_3$, Weierstrass $\wp'(z), \wp(z), \sigma$
(Bounding inequality, Jacobi $\theta$, Weierstrass $\mathfrak g_2, \mathfrak g_3$, Weierstrass $\wp'(z), \wp(z), \sigma$)

Sažetak
Non--negative functions $L, R$ are given such that $L(z) \le |\wp'(z)|\le R(z)$, where $L(z) = \mathcal O(H(2|z|)\delta_z^{; ; -4}; ; ), \, R(z) = \mathcal O (\delta_z^{; ; -3}; ; )$ and $\delta_z := \inf_{; ; \mathbb Z^2}; ; |z-\mathbb Z^2|, \, z \in \mathbb C$. Here $$H(r):= \frac{; ; \min\{; ; r^2- [r^2], [r^2] +1-r^2\}; ; }; ; {; ; 2r+1/\sqrt{; ; 2}; ; }; ; \qquad (r \ge 0), $$ with $[a]$ being the integer part of $a$. By this results growth rate are deduced for $|\wp(z)|$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije

Ustanove:
Pomorski fakultet, Rijeka

Profili:

Avatar Url Tibor Poganj (autor)


Citiraj ovu publikaciju:

Poganj, Tibor
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$ // Advances in Inequalities for Special Functions / Cerone, Pietro ; Dragomir, Silvestru Sever (ur.).
New York (NY): Nova Science Publishers, 2008. str. 125-132
Poganj, T. (2008) On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$. U: Cerone, P. & Dragomir, S. (ur.) Advances in Inequalities for Special Functions. New York (NY), Nova Science Publishers, str. 125-132.
@inbook{inbook, author = {Poganj, Tibor}, year = {2008}, pages = {125-132}, keywords = {Bounding inequality, Jacobi $\theta$, Weierstrass invariants $\mathfrak g\_2, \mathfrak g\_3$, Weierstrass $\wp'(z), \wp(z), \sigma$}, isbn = {1-60021-919-5}, title = {On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$}, keyword = {Bounding inequality, Jacobi $\theta$, Weierstrass invariants $\mathfrak g\_2, \mathfrak g\_3$, Weierstrass $\wp'(z), \wp(z), \sigma$}, publisher = {Nova Science Publishers}, publisherplace = {New York (NY)} }
@inbook{inbook, author = {Poganj, Tibor}, year = {2008}, pages = {125-132}, keywords = {Bounding inequality, Jacobi $\theta$, Weierstrass $\mathfrak g\_2, \mathfrak g\_3$, Weierstrass $\wp'(z), \wp(z), \sigma$}, isbn = {1-60021-919-5}, title = {On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$}, keyword = {Bounding inequality, Jacobi $\theta$, Weierstrass $\mathfrak g\_2, \mathfrak g\_3$, Weierstrass $\wp'(z), \wp(z), \sigma$}, publisher = {Nova Science Publishers}, publisherplace = {New York (NY)} }




Contrast
Increase Font
Decrease Font
Dyslexic Font