Pregled bibliografske jedinice broj: 292187
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$ // Advances in Inequalities for Special Functions / Cerone, Pietro ; Dragomir, Silvestru Sever (ur.).
New York (NY): Nova Science Publishers, 2008. str. 125-132
CROSBI ID: 292187 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On growth rates of Weierstrass $\wp'(z)$ and $\wp(z)$
Autori
Poganj, Tibor
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Advances in Inequalities for Special Functions
Urednik/ci
Cerone, Pietro ; Dragomir, Silvestru Sever
Izdavač
Nova Science Publishers
Grad
New York (NY)
Godina
2008
Raspon stranica
125-132
ISBN
1-60021-919-5
Ključne riječi
Bounding inequality, Jacobi $\theta$, Weierstrass invariants $\mathfrak g_2, \mathfrak g_3$, Weierstrass $\wp'(z), \wp(z), \sigma$
(Bounding inequality, Jacobi $\theta$, Weierstrass $\mathfrak g_2, \mathfrak g_3$, Weierstrass $\wp'(z), \wp(z), \sigma$)
Sažetak
Non--negative functions $L, R$ are given such that $L(z) \le |\wp'(z)|\le R(z)$, where $L(z) = \mathcal O(H(2|z|)\delta_z^{; ; -4}; ; ), \, R(z) = \mathcal O (\delta_z^{; ; -3}; ; )$ and $\delta_z := \inf_{; ; \mathbb Z^2}; ; |z-\mathbb Z^2|, \, z \in \mathbb C$. Here $$H(r):= \frac{; ; \min\{; ; r^2- [r^2], [r^2] +1-r^2\}; ; }; ; {; ; 2r+1/\sqrt{; ; 2}; ; }; ; \qquad (r \ge 0), $$ with $[a]$ being the integer part of $a$. By this results growth rate are deduced for $|\wp(z)|$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)