Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 28829

New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets


Drmač, Zlatko
New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets // SIAM journal on matrix analysis and applications, 21 (2000), 1026-1050 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 28829 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets

Autori
Drmač, Zlatko

Izvornik
SIAM journal on matrix analysis and applications (0895-4798) 21 (2000); 1026-1050

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
matrix triplet; singular value decomposition; accurate algorithm

Sažetak
This paper presents a new algorithm for accurate floating-point computation of the singular value decomposition (SVD) of the product $A = B^{\tau} S C,$ where $ B\in {\hbox{{\bf R}$^{p\times m} $}},$ $C\in {\hbox{{\bf R}$^{q\times n}$}},$ $S\in {\hbox{{\bf R}$^{p\times q}$}},$ and $p\leq m,$ $q\leq n$.\ The new algorithm uses diagonal scalings, the LU factorization with complete pivoting, the QR factorization with column pivoting, and matrix multiplication to replace $A$ by $A' = B'^{\tau}S'C',$ where A and A' have the same singular values and the matrix A' is computed explicitly. The singular values of A' are computed using the Jacobi SVD algorithm. It is shown that the accuracy of the new algorithm is determined by (i) the accuracy of the QR factorizations of $B^{\tau}$ and $C^{\tau}$; (ii) the accuracy of the LU factorization with complete pivoting of S; and (iii) the accuracy of the computation of the SVD of a matrix $A'$ with moderate $\min_{D=\diag} \kappa_2(A'D)$.\ Theoretical analysis and numerical evidence show that, in the case of rank (B)= rank(C)=p and full rank S, the accuracy of the new algorithm is unaffected by replacing B, S, C with, respectively, D1 B, D2SD3,D4 C, where Di, i=1, . . .,4, are arbitrary diagonal matrices. As an application, the paper proposes new accurate algorithms for computing the (H,K)--SVD and (H-1,K)--SVD of S.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037012

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Zlatko Drmač (autor)


Citiraj ovu publikaciju:

Drmač, Zlatko
New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets // SIAM journal on matrix analysis and applications, 21 (2000), 1026-1050 (međunarodna recenzija, članak, znanstveni)
Drmač, Z. (2000) New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets. SIAM journal on matrix analysis and applications, 21, 1026-1050.
@article{article, author = {Drma\v{c}, Zlatko}, year = {2000}, pages = {1026-1050}, keywords = {matrix triplet, singular value decomposition, accurate algorithm}, journal = {SIAM journal on matrix analysis and applications}, volume = {21}, issn = {0895-4798}, title = {New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets}, keyword = {matrix triplet, singular value decomposition, accurate algorithm} }
@article{article, author = {Drma\v{c}, Zlatko}, year = {2000}, pages = {1026-1050}, keywords = {matrix triplet, singular value decomposition, accurate algorithm}, journal = {SIAM journal on matrix analysis and applications}, volume = {21}, issn = {0895-4798}, title = {New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets}, keyword = {matrix triplet, singular value decomposition, accurate algorithm} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font