Pregled bibliografske jedinice broj: 28829
New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets
New Accurate Algorithms for Singular Value Decomposition of Matrix Triplets // SIAM journal on matrix analysis and applications, 21 (2000), 1026-1050 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 28829 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
New Accurate Algorithms for Singular Value
Decomposition of Matrix Triplets
Autori
Drmač, Zlatko
Izvornik
SIAM journal on matrix analysis and applications (0895-4798) 21
(2000);
1026-1050
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
matrix triplet; singular value decomposition; accurate algorithm
Sažetak
This paper presents a new algorithm for accurate
floating-point computation of the singular value
decomposition (SVD) of the product $A = B^{\tau}
S C,$ where $ B\in {\hbox{{\bf R}$^{p\times m}
$}},$ $C\in {\hbox{{\bf R}$^{q\times n}$}},$
$S\in {\hbox{{\bf R}$^{p\times q}$}},$ and
$p\leq m,$ $q\leq n$.\ The new algorithm uses
diagonal scalings, the LU factorization with
complete pivoting, the QR factorization with
column pivoting, and matrix multiplication to
replace $A$ by $A' = B'^{\tau}S'C',$ where A and
A' have the same singular values and the matrix
A' is computed explicitly. The singular values of
A' are computed using the Jacobi SVD algorithm.
It is shown that the accuracy of the new
algorithm is determined by (i) the accuracy of the QR factorizations of $B^{\tau}$ and
$C^{\tau}$; (ii) the accuracy of the LU
factorization with complete pivoting of S; and
(iii) the accuracy of the computation of the SVD
of a matrix $A'$ with moderate $\min_{D=\diag}
\kappa_2(A'D)$.\ Theoretical analysis and
numerical evidence show that, in the case of rank
(B)= rank(C)=p and full rank S, the accuracy of
the new algorithm is unaffected by replacing B,
S, C with, respectively, D1 B, D2SD3,D4 C, where Di, i=1, . . .,4, are arbitrary diagonal
matrices. As an application, the paper proposes
new accurate algorithms for computing the
(H,K)--SVD and (H-1,K)--SVD of S.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037012
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Zlatko Drmač
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews