Pregled bibliografske jedinice broj: 28777
Formulation of Boundary Element Method for Unsteady Heat Conduction
Formulation of Boundary Element Method for Unsteady Heat Conduction // 3. Međunarodno znanstveno stručno savjetovaje Energetska i procesna postrojenja
Zagreb: Energetika marketing, 1998. str. 709-715 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 28777 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Formulation of Boundary Element Method for Unsteady Heat Conduction
Autori
Obsieger, Boris
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
3. Međunarodno znanstveno stručno savjetovaje Energetska i procesna postrojenja
/ - Zagreb : Energetika marketing, 1998, 709-715
Skup
Međunarodno znanstveno stručno savjetovaje Energetska i procesna postrojenja
Mjesto i datum
Dubrovnik, Hrvatska, 03.06.1998. - 05.06.1998
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
unsteady heat conduction; boundary element method
Sažetak
The paper presents a boundary element method for solving problems related to unsteady heat conduction in isotropic space. From Green's theorem of heat conduction (that reduces the integration on spatial-time domain to integration on spatial-time boundary) and differential equation of heat conduction follows integral equation of unsteady heat conduction. By dividing boundary into boundary elements, integral equation of unsteady heat conduction is reduced to the series of systems of linear equations. Each system represents equilibrium of boundary conditions in the actual time interval in relation to heat sources and boundary conditions applied in the past time intervals. After boundary conditions are determined for the specific time-interval, it is easy to find temperature field and heat flux in the same time-interval. Dividing boundary into boundary elements is a simple process in comparison to dividing entire body into finite elements. Obtained systems of linear equations have significantly lesser number of unknowns and equations than similar systems obtained by other numerical methods, such as by finite element and finite differences methods.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA