Pregled bibliografske jedinice broj: 284724
Regularized Multitarget Particle Filter for Sensor Management
Regularized Multitarget Particle Filter for Sensor Management // Proceedings of SPIE / Kadar, Ivan (ur.).
Bellingham (WA): SPIE, 2006. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 284724 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Regularized Multitarget Particle Filter for Sensor Management
Autori
El-Fallah, Adel ; Zatezalo, Aleksandar ; Mahler, Ronald ; Mehra, K.Raman ; Alford, Mark
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of SPIE
/ Kadar, Ivan - Bellingham (WA) : SPIE, 2006
Skup
Defense and Security Symposium 2006
Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 17.04.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Sensor Management; Multitarget-Multisensor Tracking; Random Sets; Particle Filtering
Sažetak
Sensor management in support of Level 1 data fusion (multisensor integration), or Level 2 data fusion (situation assessment) requires a computationally tractable multitarget filter. The theoretically optimal approach to this multi-target filtering is a suitable generalization of the recursive Bayes nonlinear filter. However, this optimal filter is intractable and computationally challenging that it must usually be approximated. We report on the approximation of a multi-target non-linear filtering for Sensor Management that is based on the particle filter implementation of Stein- Winter probability hypothesis densities (PHDs). Our main focus is on the operational utility of the implementation, and its computational efficiency and robustness for sensor management applications. We present a multitarget Particle Filter (PF) implementation of the PHD that include clustering, regularization, and computational efficiency. We present some open problems, and suggest future developments. Sensor management demonstrations using a simulated multi-target scenario are presented.
Izvorni jezik
Engleski
Znanstvena područja
Matematika