Pregled bibliografske jedinice broj: 284722
Performance Evaluation of Nonlinear Filters for Tracking Multiple Ballistic Targets
Performance Evaluation of Nonlinear Filters for Tracking Multiple Ballistic Targets // Proceedings of SPIE / Kadar, Ivan (ur.).
Bellingham (WA): SPIE, 2005. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 284722 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Performance Evaluation of Nonlinear Filters for Tracking Multiple Ballistic Targets
Autori
Sinhaa, A. ; Nandakumarana, N. ; Sutharsana, S. ; Kirubarajana, T. ; El-Fallah, Adel ; Zatezalo, Aleksandar
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of SPIE
/ Kadar, Ivan - Bellingham (WA) : SPIE, 2005
Skup
Defense and Security Symposium 2005
Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 28.03.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
closely-spaced target tracking; spawning target tracking; feature-aided tracking; particle filters
Sažetak
The particle filter is an effective technique for target tracking in the presence of nonlinear system model, nonlinear measurement model or non-Gaussian noise in the system and/or measurement processes. In this paper, we compare three particle filtering algorithms on a spawning ballistic target tracking scenario. One of the algorithms, the tagged particle filter (TPF), was recently developed by us. It uses separate sets of particles for separate tracks. However, data association to different tracks is interdependent. The other two algorithms implemented in this paper are the probability hypothesis density (PHD) algorithm and the joint multitarget probability density (JMPD). The PHD filter propagates the first order statistical moment of multitarget density using particles. While, the JMPD stacks the states of a number of targets to form a single particle that is representative of the whole system. Simulation results are presented to compare the performances of these algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Matematika