Pregled bibliografske jedinice broj: 284421
Selecting neural network architecture for investment profitability predictions
Selecting neural network architecture for investment profitability predictions // Journal of information and organizational sciences, 30 (2006), 1; 93-103 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 284421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Selecting neural network architecture for investment profitability predictions
Autori
Kišasondi, Tonimir ; Lovrenčić, Alen
Izvornik
Journal of information and organizational sciences (1846-3312) 30
(2006), 1;
93-103
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
neural networks; MLP training algorithms; neural network ADT; neural network graph modelling
Sažetak
In this paper we present a modified neural network architecture and an algorithm that enables neural networks to learn vectors in accordance to user designed sequences or graph structures. This enables us to use the modified network algorithm to identify, generate or complete specified patterns that are learned in the training phase. The algorithm is based on the idea that neural networks in the human neurocortex represent a distributed memory of sequences that are stored in invariant hierarchical form with associative access. The algorithm was tested on our custom built simulator that support usage of our ADT neural network with standard backpropagation and our custom built training algorithms, and it proved to be useful and successful in modelling graphs.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- Mathematical Reviews
- Referativnyj žurnal (Informatika)
- Zentralblatt fur Mathematik / Mathematics Abstracts