ࡱ> {q` RPbjbjqPqPKV::"^llll"""0"mmm8,n0o0"qjr:rrr||| $]h>29"W||WW2llrr! k///Wlr"r /W //l!"rq `Tm |*<0ϋT"P|V~/|||22ōj|||WWWW0"0"0"Km0"0"0"m0"0"0"llllll  Asian-Aust. J. Anim. Sci. Vol. 00, No. 00 : 0000 - 0000 Month 0000www.ajas.infoGenetic Parameters for Litter Size in Pigs Using a Random Regression Model Z. Lukovic*, M. Uremovic, M. Konjacic, Z. Uremovic and D. Vincek Faculty of Agriculture, University of Zagreb, 10000 Zagreb, CroatiaABSTRACT : Dispersion parameters for the number of piglets born alive were estimated using a repeatability and random regression model. Six sow breeds/lines were included in the analysis: Swedish Landrace, Large White and both crossbred lines between them, German Landrace and their cross with Large White. Fixed part of the model included sow genotype, mating season as month-year interaction, parity and weaning to conception interval as class effects. The age at farrowing was modelled as a quadratic regression nested within parity. The previous lactation length was fitted as a linear regression. Random regressions for parity on Legendre polynomials were included for direct additive genetic, permanent environmental, and common litter environmental effects. Orthogonal Legendre polynomials from the linear to the cubic power were fitted. In the repeatability model estimate of heritability was 0.07, permanent environmental effect as ratio was 0.04, and common litter environmental effect as ratio was 0.01. Estimates of genetic parameters with the random regression model were generally higher than in the repeatability model, except for the common litter environmental effect. Estimates of heritability ranged from 0.06 to 0.10. Permanent environmental effect as a ratio increased along a trajectory from 0.03 to 0.11. Magnitudes of common litter effect were small (around 0.01). The eigenvalues of covariance functions showed that between 7 and 8 % of genetic variability was explained by individual genetic curves of sows. This proportion was mainly covered by linear and quadratic coefficients. Results suggest that the random regression model could be used for genetic analysis of litter size. (Key Words : Pigs, Litter Size, Random Regression Model, Genetic Parameters) INTRODUCTION * Corresponding Author: Z. Lukovic. Tel: +385-1-2393645, Fax: +385-1-2393901, E-mail: lukovic@agr.hr 1 Croatian Livestock Center, 10000 Zagreb, Croatia. Received March 10, 2006; Accepted July 10, 2006There are several approaches to choice of method for genetic evaluation of litter size in pigs. They depend on genetic correlations between litter size in different parities, size of data set, capacity of computers etc. For traits like litter size the general question is whether to use a repeatability model or a multiple trait model. Many breeding programmes use a repeatability model for estimation of breeding values for litter size, mainly due to its simplicity (Alfonso et al., 1997). A repeatability model assumes complete genetic correlations between litter sizes in subsequent parities and a constant variance along the trajectory. Multiple trait analysis supposes subsequent observations to be different traits and may lead to more accurate genetic evaluation (Wang and Lee, 1999). Estimates of genetic correlations between parities were sometimes substantially lower than one, especially between the first and the later parities (Oh et al., 2006). The low correlations between parities indicate that partly different genes are responsible for litter size in different parities. However, multiple trait analyses were not always successful, mainly due to computational problems as a consequence of high genetic correlations in the last parities. A recent approach in handling with longitudinal data or repeated observations has been the use of covariance functions and random regression model-RRM (Schaeffer and Dekkers, 1994). Litter size in pigs is measured more than once in a sow lifetime and could be considered as a longitudinal trait too. In pigs, RRMs were mainly used for feed intake and growth (Liu et al., 2002). Although, litter size differed from the growth traits, RRMs could be applied also for estimation of genetic parameters (Schaeffer, 2004). Main advantages of the RRMs in comparison to multiple trait models are smoother, less biassed (co)variance estimates as well as the possibility to predict covariance structure and breeding value of the animal at any point along the trajectory. The aim of this paper was to estimate genetic parameters for number of piglets born alive (NBA) and to check the possibility of using RRM in order to increase accuracy of genetic evaluation for litter size. MATERIALS AND METHODS The data were obtained from the database of the pig recording system of the Croatian Livestock Center. Litter records from the first to the tenth parity from sows that farrowed between May 1992 and February 2005 were included. Besides identification number of sows and number of piglets born alive, individual records consisted of sow genotype, service sire, service sire breed, parity, mating season, age at farrowing, previous lactation length and weaning to conception interval. Records were excluded from analysis if data were outside the expected range (interval) obtained by examination of the data. Those records with previous lactation length longer than 60 days or previous weaning to conception interval longer than 80 days were deleted. Around 1% of records were removed for not meeting the above criteria. After data editing, a total of 50,748 records were used. The data and pedigree structure are presented in Table 1. The pedigree file was prepared for three generations. Table 1. Data and pedigree structureItemDataItemPedigreeNo. of litters50,748No. of animals with records10,549No. of animals10,549No. of ancestors1,667Litters per animal4.81No. of base animals1,330Animals per common litter1.70No. of sires479Six sow breeds/lines were included in the analysis: Swedish Landrace (SL), Large White (LW), both crossbred lines between them-SL(LW and LW(SL, German Landrace (GL) and their crossbred line with Large White-GL(LW (Table 2). As expected, litter size was higher for crossbred sows. The previous lactation length did not differ greatly between the genotypes. The longest weaning to conception interval was recorded in the LW sows. Table 2. Number of records, mean and standard deviation for number of piglets born alive (NBA), previous lactation length (LACT), and weaning to conception interval (WCI) by sow breed/lineSow breed/line*No. of recordsNBALACTWCISL15,6929.70(2.8323.17(5.6213.33(16.29LW(SL**8309.96(2.7924.21(5.9912.08(15.64SL(LW15,9899.94(2.8524.11(6.5913.85(16.82LW1,2779.52(2.7123.11(5.7915.11(16.75GL10,3969.32(2.6823.52(5.7412.90(15.95GL(LW6,5649.75(2.8324.39(7.0813.78(16.46* SL = Swedish Landrace, LW = Large White, GL = German Landrace; ** Sow breed given first.Choice of the fixed effects in the model for NBA is based on coefficient of determination, degrees of freedom, significance and proportion of variation explained by the effect studied, as well as simplicity and interpretation of the model. Significance of the effects was tested at the level of p<0.05 using the GLM procedure (SAS Inst. Inc., 2001). Fixed effects analysis showed that the following repeatability model (1) could be used for genetic evaluation of pigs, EMBED Equation.3 (1) where yijklmno is NBA. Fixed effects in the model were: sow breed/line (Gi), mating season (Sj), service sire (Bk), weaning to conception interval (Wl), parity (Pm), age at farrowing (xijklmno), and previous lactation length (zijklmno). The weaning to conception interval was defined as a class effect with the following classes: 1-3, 4, 5, 6, 7, 8, 9, 10-23, 24-33, and 34-80 days. Three classes were considered for parity effect: the first for parity one, the second for parity two, and the third with later parities. Age at farrowing was modelled as a quadratic regression nested within parity class and previous lactation length was fitted as a linear regression. The random part of the repeatability model consisted of a common litter environmental effect (c), permanent environmental effect (p), and direct additive genetic effect (a). Preliminary analysis showed a negligible estimate for the maternal effect. Therefore, it was not included in the model. In matrix notation the repeatability model can be written as: EMBED Equation.3 (2) where y is a vector containing NBA records, ( is a vector of unknown parameters for fixed effects, c, p and a are vectors of parameters for common litter environmental, permanent environmental and direct additive genetic effect. X, Zc, Zp and Za are the corresponding incidence matrices. Finally, vector e presents the random residual. The following covariance structure (3) in the repeatability model was assumed: EMBED Equation.3 (3) where A is the numerator relationship matrix, Ic is identity matrix for common litter environmental effect, Ip is identity matrix for permanent environmental effect, Ie is identity matrix for residual. Covariances between random effects were assumed to be zero. Table 3. Estimates of variances and ratios of phenotypic variance by repeatability model*Variances(ph(a(l(p(e7.4680.5190.0740.3256.549Ratio in the phenotypic variancehalpe0.0700.0100.0440.877* (ph: phenotypic variance, (a: direct additive genetic variance, (l: common litter environmental variance, (p: permanent environmental variance, (e : residual variance, ha: heritability, l: ratio of common litter environmental effect, p: ratio of permanent environmental effect, e: ratio of residual term.The following random regression model (4) with different order of Legendre polynomials was fitted: EMBED Equation.3 (4) The set of fixed effects used in RRM analysis for NBA included the same effects as in the repeatability model. The direct additive genetic effect, common litter environmental effect and permanent environmental effect were fitted as a random regression on parity using Legendre polynomials (LG). Orthogonal Legendre polynomials from linear (LG1) with two terms to cubic (LG3) with four terms were fitted. The standardized parity, with range from -1 to +1, was derived from (5) where pmin is the first and pmax the tenth parity. EMBED Equation.3 (5) Matrix notation for random regression model is the same as for repeatability model (2). The following structure of covariances for RRM (6) was assumed: EMBED Equation.3 (6) where A is relationship matrix, Koa is the covariance matrix for direct additive genetic effect, Koc is the covariance matrix for common litter effect, Kop is the covariance matrix for permanent environmental effect, Il and Ip are identity matrix, and Roi is residual matrix. Random effects and the residual were assumed to be independent and normally distributed. Covariances for NBA for every combination of two parities were calculated as shown in the case of direct additive genetic effect (7); EMBED Equation.3 (7) where Ca is matrix of covariances and ( is a matrix containing covariables for Legendre polynomials for parities. Estimation of the covariance components in the repeatability and random regression model was based on Restricted Maximum Likelihood Method (REML) using the VCE5 software package (Kovac et al., 2002). RESULTS AND DISCUSSION Assuming complete genetic correlation between litter size in different parities, estimates of variance components and their ratios in the phenotypic variance were calculated using the repeatability model (Table 3). Within phenotypic variance, the largest part of variability belonged to residual variance (87.7%). About 12.3% of total variability was explained by random effects. The greater part of variability was explained by direct additive genetic effect (0.070), followed by permanent environmental effect (0.044), and the smallest proportion by the common litter environmental effect (0.010). Estimated phenotypic variance for NBA in the repeatability model (7.47) agreed with literature estimates (Ferraz and Johnson, 1993; Crump et al., 1997; Hanenberg et al., 2001). All of these estimates were obtained with repeatability models that included effects such as breed, parity, different contemporary groups, and seldom effects such as number of inseminations or sow birth period. Estimates also differed in number of data (between a few thousand and 200 thousand litter records). Some lower estimates of phenotypic variance for NBA (5.05 to 6.31) were reported by Chen et al. (2003) who included Landrace and Large White sows in their study, as did the authors mentioned above, but also litter records from Hampshire and Duroc sows. Besides breed difference, also reported by Chu (2005), pig losses accounted during the first two days may reduce the phenotypic variance for NBA (Kaplon et al., 1991), which could be one explanation for differences between studies. Estimation of direct additive genetic effect (0.52) is higher than estimated in the study by Chen et al. (2003). A heritability estimate of 0.07 is lower than the average heritability estimate for NBA of 0.09 as reviewed by Rothschild and Bidanel (1998). The estimate of common litter environmental variance is the smallest of all variance components, as well as its ratio in the phenotypic variance that explains only 1% of the total variability. The small magnitude of this effect could be explained as a consequence of small full-sib size in the data, averaging only 1.7 animals which came from the same litter. More than 50% of the data consisted of single sow families. The estimate of permanent environmental variance was in agreement with Chen et al. (2003) who reported estimates of permanent environmental variances between 0.34 and 0.49. The estimate of permanent environmental effect as a ratio in the phenotypic variance was consistent with values reported by Logar et al. (1999) and Chen et al. (2003), but lower than estimates of 16 to 17% reported by Ferraz and Johnson (1993). Residual error variance as well as corresponding ratio in the phenotypic variance represents the largest part of variability. Table 4. Estimates of direct additive genetic (above diagonal) and phenotypic correlations (below diagonal) by random regression modelParityNo. of recordsParity12345678910110,3240.8960.7720.7260.7250.7290.7100.6560.5440.33728,0800.1230.9730.9470.9270.8960.8500.8000.7440.64537,2080.1220.1320.9930.9730.9350.8860.8470.8250.78346,1160.1150.1280.1500.9920.9630.9230.8930.8820.84955,1380.1060.1180.1410.1520.9900.9650.9440.9320.88364,2200.1010.1100.1340.1500.1600.9930.9800.9630.89073,4150.0950.1010.1270.1480.1650.1850.9960.9770.88882,6980.0820.0900.1170.1400.1590.1830.2040.9890.90592,0600.0700.0880.1190.1430.1630.1860.2090.2160.957101,4890.0510.0870.1230.1450.1580.1740.1920.2010.227Table 5. Estimated variance components and proportions in the phenotypic variance for NBA by random regression model*Parity(ph(a(p(l(ehaple15.930.530.220.095.090.0900.0370.0150.85927.990.480.320.127.080.0600.0400.0150.88637.380.540.390.126.330.0740.0530.0170.85747.610.600.450.096.470.0790.0590.0110.85158.140.630.520.056.940.0770.0630.0070.85367.970.660.610.056.640.0830.0770.0070.83377.720.700.730.086.200.0910.0950.0100.80388.390.740.850.106.700.0880.1020.0110.79998.140.770.940.126.310.0950.1150.0150.776108.970.900.930.336.810.1000.1040.0360.760* (ph: phenotypic variance, (a: direct additive genetic variance, p: permanent environmental variance, (l: common litter environmental variance, (e: residual variance, ha: heritability, p: ratio of permanent environmental effect, l: ratio of common litter environmental effect, e: ratio of residual term.Genetic correlations between litter sizes in different parities using RRM ranged from 0.34 to 0.99 (Table 4). The smallest genetic correlations were between the first and the later parities, and ranged between 0.90 and 0.34. Direct additive genetic correlations were highest between adjacent parities (0.90 to 0.99) and decreased as the interval between parities increased. Phenotypic correlations were much lower compared to genetic ones and ranged from 0.12 to 0.22, but showed a similar tendency to genetic correlations (Table 4). Estimates of variances as well as ratios in the phenotypic variance for random effects obtained with the random regression model (Table 5) were slightly higher than those obtained using the repeatability model (Table 3). Except for the first parity, phenotypic variances by parities obtained with RRM were somewhat higher than in the repeatability model. Phenotypic variance ranged between 5.9 in the first parity and 9.0 in the tenth parity. Direct additive genetic variance as well as permanent environmental variance increased by parities. The smallest estimates of common litter environmental variances were noticed in the middle of the trajectory, in the fifth and sixth parity. Estimates of residual variance oscillated by parities, with the highest value in the second parity. Heritability estimates by parities ranged between 0.06 in the second parity and 0.10 in the tenth parity. Permanent environmental effect as a proportion in the phenotypic variance increased by parity and ranged from 0.04 to 0.11. Estimates of common litter environmental effect as a ratio were similar in magnitude (0.01) as in the repeatability model, except for the last parity. Estimates for residual variance as a ratio decreased by parities and ranged between 0.89 in the second parity and 0.76 in the tenth parity. Direct additive genetic correlations obtained with RRM were somewhat lower than estimates obtained by Hanenberg et al. (2001) using a multiple trait model for the first six parities. They reported an increase from 0.79 between the first and the second parity to 0.96 between the fifth and the sixth parity. Generally, heritability estimates obtained with RRM were somewhat higher than those found in a univariate repeatability model. Estimates of direct additive genetic variances as well as heritabilities with RRM showed a decrease in the second parity. Similar findings of heritability decline in the second parity were reported by Hanenberg et al. (2001). Table 6. Eigenvalues with proportion (in brackets) of estimated covariance matrices of random regression coefficients for direct additive genetic effect with different Legendre polynomials (LG1-LG3)ModelEigenvalues0th1st2nd3rdLG11.214 (92.46)0.099 (7.54)LG21.192 (92.62)0.088 (6.84)0.007 (0.54)LG31.185 (93.30)0.083 (6.54)0.002 (0.16)0.000 (0.00)According to computing requirements for applied procedures of genetic evaluation of litter size, the repeatability model was the time-effective method of choice. With several measurements per animal, it requires less computational effort and less parameters to estimate than the random regression approach. However, if genetic correlations between litter sizes in different parities were lower and multiple trait analysis cannot be conducted due to computational problems, RRM could be preferred. The eigenvalues for covariance matrices of the regression coefficients were calculated to quantify the relative contribution of higher terms in Legendre polynomials (Table 6). The eigenvalues of genetic covariance functions showed that the constant (zero) term accounted for between 92 and 93% of the additive genetic variability for NBA. This means that approximately 7 to 8% of variability was explained by the individual genetic curve of a sow. Eigenvalues of covariance functions also showed that quadratic Legendre polynomials with three coefficients are sufficient to model almost all variability for NBA. The proportion of direct additive genetic variance for higher terms was mainly covered by the linear coefficient (6.54 to 7.54). In comparison to multiple-trait models, RRM is more correct from a statistical point of view, because it includes permanent environmental effect, which explained a substantial part of phenotypic variability. The repeatability model also includes permanent environment, but does not allow change of correlations between parities. RRM could be also more acceptable in definition of selection criteria. Between 7 and 8% of variability explained by individual curve could be interesting in selection for shape of production curve for litter size. Therefore, besides an increase in overall level of production (litter size), with inclusion of higher parities in the data set, RRM allows selection for persistency of litter size. REFERENCES Alfonso, L., J. L. Noguera, D. Babot and J. Estany. 1997. Estimation of genetic parameters for litter size at different parities in pigs. Livest. Prod. Sci. 47:149-156. Chen, P., T. J. Baas, J. W. Mabry, K. J. Koehler and J. C. M. Dekkers. 2003. Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 81:46-53. Chu, M. X. 2005. Statistical analysis of stillbirths in different genotypes of sows. Asian-Aust. J. Anim. Sci. 18:1475-1478. Crump, R. E., C. S. Haley, R. Thompson and J. Mercer. 1997. Individual animal model estimates of genetic parameters for reproduction traits of Landrace pigs performance tested in a commercial nucleus herd. Anim. Sci. 65:285-290. Ferraz, J. B. S. and R. K. Johnson. 1993. Animal model estimation of genetic parameters and response to selection for litter size and weight, growth, and backfat in closed seedstock populations of Large White and Landrace swine. J. Anim. Sci. 71:850-858. Haley, C. S., E. Avalos and C. Smith. 1988. Selection for litter size in the pig. Anim. Breed. Abstr. 56:317-332. Hanenberg, E. H. A. T., E. F. Knol and J. W. M. Merks. 2001. Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livest. Prod. Sci. 69:179-186. Kaplon, M. J., M. F. Rothschild, P. J. Berger and M. Healey. 1991. Population parameter estimates for performance and reproductive traits in Polish Large White nucleus herd. J. Anim. Sci. 69:91-98. Kovac, M., E. Groeneveld and L. A. Garcia-Cortes. 2002. VCE-5, a package for the estimation of dispersion parameters. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpelier, France, 33:741-742. Liu, W., G. Cao, Z. Zhou and G. Zhang. 2002. Estimation of genetic and phenotypic covariance functions for body weight as longitudinal data of SD-II swine line. Asian-Aust. J. Anim. Sci. 15:622-626. Logar, B., M. Kovac and S. Malovrh. 1999. Estimation of genetic parameters for litter size in pigs from different genetic groups. Acta Agr. Kapos. 3:135-143. Oh, S. H., D. H. Lee and M. T. See. 2006. Estimation of genetic parameters for reproductive traits between first and later parities in pig. Asian-Aust. J. Anim. Sci. 19:7-12. Rothschild, M. F. and J. P. Bidanel. 1998. Biology and genetics of reproduction. In: The genetics of the pig (Ed. M. F. Rothschild and A. Ruvinsky). CAB International, Oxon, UK. pp. 313-343. SAS Institute Inc. 2001. The SAS System for Windows, Release 8.02. SAS Institute Inc., Cary, North Carolina. Schaeffer, L. R. 2004. Application of random regression models in animal breeding. Livest. Prod. Sci. 86:35-45. Schaefer, L. R. and J. C. M. Dekkers. 1994. Random regressions in animal models for test-day production in dairy cattle. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph. 18:443-446. Wang, C. D. and C. Lee. 1999. Estimation of genetic variance and covariance components for litter size and litter weight in Danish Landrace swine using a multivariate mixed model. Asian-Aust. J. Anim. Sci. 12:1015-1018.     PAGE 2 Lukovic et al., (0000) Asian-Aust. J. Anim. Sci. 00(00):0000-0000 PAGE 3 Lukovic !&(.037:>?DEI׽jjLL.jj;h'h )%5B*CJKHOJQJ^JaJnHo(phftH;h'h5B*CJKHOJQJ^JaJnHo(phftH;h'h'5B*CJKHOJQJ^JaJnHo(phftH8h'h )%5B*CJKHOJQJ^JaJnHphftH/hHh )%5CJKHOJQJ^JaJnHtH2hth )%5CJKHOJQJ^JaJnHo(tH#h/h )%CJKHaJnHo(tH,jhX2hX2CJKHUaJnHo(tH!?J$d$m&P#$1$G$H$Ifa$b$gd )%$d$m&P#$1$G$H$Ifa$b$gdH$d,$m&P#$1$G$H$Ifa$b$gd(z$d,$m&P#$1$G$H$Ifa$b$gdX2 gdP~PIJKLP]^_`atuʳhNhNhNh<#h?VNh?VNCJKHaJmH o(sH 3h?VN5CJKHOJQJ\aJmH nHo(sH tH.h?VNh?VN5CJKHOJQJ\aJmH sH  h/hH#hthHCJKHaJnHo(tH2hHh )%5CJ KHOJQJ^JaJ nHo(tH,hHh )%CJKHOJQJ^JaJnHtH#h/h )%CJKHaJnHo(tHh )% h/h )%/h )%h )%CJKHOJQJ^JaJnHo(tHJKLM7$d,$m&P#$1$G$H$Ifa$b$gd(zkdg$$If4ֈP A H&`l ``h`g`8d  6Pm0&4ae4MNOP^$d$m&P#$1$G$H$Ifa$b$gd )%$d,$m&P#$1$G$H$Ifa$b$gd(z^_`7$d,$m&P#$1$G$H$Ifa$b$gd(zkdi$$If4ֈP A H& l  h g 8d  6Pm0&4ae4`a3 $d,$m&P#$1$G$H$Ifa$b$gd?VNekd5j$$If&& 6Pm0&4ae42 3 4 5 6 @ ۜlWD4hs!jhT-CJKHOJ]aJ$hs!jhT-0J>CJOJQJ^JaJ(hBhBCJKHOJQJaJmH sH *hs!jhD5CJKHOJQJ^JaJo(h/hDOJh hDOJo( h/hH$h*7hHKHOJQJ^JmH sH +h?VN5CJKH\aJmH nHo(sH tH+h5CJKH\aJmH nHo(sH tH h?VNh?VNCJKHaJmH sH &h?VNh?VN5CJKH\aJmH sH 3 4 5 6 gkdek$$If&& 6Pm0&4ae4$m&P#$4$G$H$Ifb$ekdj$$If&& 6Pm0&4ae4-./01>?@VWacȶuhWJ:)J h?VNh CJKHaJmH sH h?VNh CJKH\aJo(h?VNh CJKHaJ h?VNh CJKHaJnHtHh3hDCJKHaJhDOJQJ^Jo(hD5OJQJ\^JhhDCJ \^JaJ o(1hs!jhT-B*CJKHOJPJQJ^JaJph"hs!jhT-CJKHOJ]aJo(+hs!jhs!jCJKHOJQJ\aJmH sH hs!jhCJKHOJaJo("hs!jh5CJKHOJaJo(6 /01>?\N<,d1$G$H$WD`,gd3 "$dWD`a$gkdl$$If&& 6Pm0&4ae4d$m&P#$4$7$8$G$H$Ifb$gdq&!5$d$m&P#$1$G$H$If[$\$a$b$gd+Xclmnowxy}~˸zmUCmCm#h?VNh CJKHaJnHo(tH/h?VNh B*CJKH\aJnHo(phtHh?VNh CJKHaJ$h?VNh B*CJKH\aJph*h?VNh B*CJH*KH\aJo(ph(h?VNh CJKHaJmHnHsHtH%h CJKHaJmHnHo(sHtHh CJKHaJmHsH+h?VNh CJKHaJmHnHo(sHtH h?VNh CJKHaJmHsH?  yggUF$d1$G$H$a$gd3,d1$G$H$WD`,gd_,d1$G$H$WD`,gdBnkdl$$If 6@0244 ae4d$&@#$1$G$H$Ifb$gd   WXjtW[ĵĕĄxiĕXE%hBCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH hK hECJaJmH sH hECJaJmH sH !hBCJaJmH nHo(sH tH hBh3CJKHaJmH sH hK h.JCJaJmH sH hK hBCJaJmH sH hBhBCJaJmH sH h?VNh CJOJaJh?VNh CJKHaJ#h?VNh CJKHaJnHo(tH[#$ $%67ƴo^O^O^<^<^O^<%hICJKHaJmH nHo(sH tHhYhICJaJmH sH  hYhICJKHaJmH sH &hYhI5CJKH\aJmH sH  ht"ahICJKHaJmH sH !ht"aCJaJmH nHo(sH tHht"aht"aCJaJmH sH #h3h35CJKHaJmH sH +h3h35CJKHOJQJaJmH sH %h3CJKHaJmH nHo(sH tH h3h3CJKHaJmH sH pJJ%$d$&@#$1$G$H$Ifa$b$gdIlCHkdhm$$If&& t 6@&44 ae4"d$&@#$1$G$H$Ifb$gdIlC,d1$G$H$WD`,gdt"a&d1$G$H$WD`&gd3kd n$$Ifr 1g& g K t 6@&44 ae4%$d$&@#$1$G$H$Ifa$b$gdIlC(d$&@#$1$G$H$IfWDd`b$gdIlC$c' xd$&@#$1$G$H$Ifb$gdIlC(d$&@#$1$G$H$IfWDd`b$gdIlC' $d$&@#$1$G$H$Ifb$gdIlC"d$&@#$1$G$H$Ifb$gdIlC$%4;~[3' $d$&@#$1$G$H$Ifb$gdIlC"d$&@#$1$G$H$Ifb$gdIlCkd o$$If\ g&  K t 6@&44 ae4;LRS-kdo$$If\ g&  K t 6@&44 ae4' xd$&@#$1$G$H$Ifb$gdIlC(d$&@#$1$G$H$IfWDd`b$gdIlC7MNRS5689BCb c k !ͼt`O h 6hICJKHaJmH sH &h 6hI5CJKH\aJmH sH  h3hICJKHaJmH sH  jhCJKHaJmH sH %hCJKHaJmH nHo(sH tH%ht"aCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH hYhICJaJmH sH %hICJKHaJmH nHo(sH tH hYhICJKHaJmH sH Sfkc' xd$&@#$1$G$H$Ifb$gdIlC(d$&@#$1$G$H$IfWDd`b$gdIlC' $d$&@#$1$G$H$Ifb$gdIlC"d$&@#$1$G$H$Ifb$gdIlC~[3' $d$&@#$1$G$H$Ifb$gdIlC"d$&@#$1$G$H$Ifb$gdIlCkdp$$If\ g&  K t 6@&44 ae4-kdq$$If\ g&  K t 6@&44 ae4' xd$&@#$1$G$H$Ifb$gdIlC(d$&@#$1$G$H$IfWDd`b$gdIlCc !!!1!@!D!I!M!\\\\%$d$&@#$1$G$H$Ifa$b$gdKWlC0Hkdr$$If&& t 6@&44 ae4"d$&@#$1$G$H$Ifb$gdKWlC0,d1$G$H$WD`,gdKW !!!M!N!S!T!\!]!g!h!r!s!y!z!|!}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""&"'"-"."0"1"5"6">"?"I"J"T"U"["\" jhICJKHaJmH sH  jhICJKHaJmH sH %hICJKHaJmH nHo(sH tH h 6hICJKHaJmH sH h 6hICJaJmH sH CM!N!Q!X!kH ' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0kd(s$$Ifr<& t 6@&44 ae4X!b!m!y!z!Ckdt$$Ifr<& t 6@&44 ae4' d$&@#$1$G$H$Ifb$gdKWlC0z!!!!!!' d$&@#$1$G$H$Ifb$gdKWlC0' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0!!!!kH ' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0kdt$$Ifr<& t 6@&44 ae4!!!!!Ckdu$$Ifr<& t 6@&44 ae4' d$&@#$1$G$H$Ifb$gdKWlC0!!!!!"' d$&@#$1$G$H$Ifb$gdKWlC0' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0""" "kH ' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0kdv$$Ifr<& t 6@&44 ae4 ""!"-"."Ckdhw$$Ifr<& t 6@&44 ae4' d$&@#$1$G$H$Ifb$gdKWlC0."4":"D"O"["' d$&@#$1$G$H$Ifb$gdKWlC0' d$&@#$1$G$H$Ifb$gdKWlC0"d$&@#$1$G$H$Ifb$gdKWlC0["\""kH"d$&@#$1$G$H$Ifb$gdKWlC0kd8x$$Ifr<& t 6@&44 ae4\"`"b"x"y""""""""]#a#####9$=$$$$$$$ʹmXA,jpH h1%UCJUV_HIaJnHo(tH)jh3h3CJKHUaJmH sH %hKWCJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH%ht"aCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH h 6hICJaJmH sH +h 6hICJKHaJmH nHo(sH tH h 6hICJKHaJmH sH ""$$$$$l(((((v*w*,d1$G$H$WD`,gd47d1$G$H$WDf`gd1%U,d1$G$H$WD`,gdKWHkdy$$If&& t 6@&44 ae4 $$$$$$$$$$$$$$$%%%%%%>%?%@%K%L%±‹u\A\A\A\A\A\4hh6CJH*KH]aJmH nHo(sH tH1hh6CJKH]aJmH nHo(sH tH+h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%h1%UCJKHaJmH nHo(sH tH h3h1%UCJKHaJmH sH  h3h3CJKHaJmH sH )jh3h3CJKHUaJmH sH -jyh1%Uh1%UCJEHKHUaJmH sH L%M%b%c%j%%%%%%%%&&1'3'''''''((((((((ԻԻԨԨԨԨԻԻԻԨԕjV'jQ@-H h3h3CJKHUVaJ)jh3h3CJKHUaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%ht"aCJKHaJmH nHo(sH tH1hh6CJKH]aJmH nHo(sH tH h3h3CJKHaJmH sH 4hh6CJH*KH]aJmH nHo(sH tH(((((((((((()):);)=)>)C)D)))))))))))ıĞċuĞdĞĞĞĞĞLĞLĞ.hhCJH*KHaJmH nHo(sH tH jbhCJKHaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH%h CJKHaJmH nHo(sH tH h3h3CJKHaJmH sH )jh3h3CJKHUaJmH sH )j}h3hCJKHUaJmH sH ))**'*,*Q*U*u*v*w*x***********ױױמvbMvמ7+h3h3CJKHaJmH nHo(sH tH)j?h3h3CJKHUaJmH sH 'jD-H h3h3CJKHUVaJ)jh3h3CJKHUaJmH sH %hK CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%ht"aCJKHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH .hhCJH*KHaJmH nHo(sH tHw***+++,, ,,,,bbbbb#$d$&@#$1$G$H$Ifa$b$gd47lCFkdǃ$$If t 6@44 ae4 d$&@#$1$G$H$Ifb$gd47lC,d1$G$H$WD`,gd47 *****+++<+=+>++++++,,,,,,, , , , , ,,,,,,,,,ۯ}lZlZlZlZlZ#h 6hKWCJH*KHaJmH sH  jshKWCJKHaJmH sH h 6hKWCJaJmH sH  h 6hKWCJKHaJmH sH #h 6hKW5CJKHaJmH sH  h3hKWCJKHaJmH sH 4hh6CJH*KH]aJmH nHo(sH tH h3h3CJKHaJmH sH %hCJKHaJmH nHo(sH tH#,,,6,7,D,E,\,],g,h,,,,,,,,,,,,,,,,,,,,,,,------4-5-7-G-H-ખnnnnnnn+hdhKWCJKHaJmH nHo(sH tH#hdhKWCJH*KHaJmH sH & jshdhKWCJKHaJmH sH  hdhKWCJKHaJmH sH #h 6hKWCJH*KHaJmH sH %hKWCJKHaJmH nHo(sH tHh 6hKWCJaJmH sH  h 6hKWCJKHaJmH sH +,,,X7 d$&@#$1$G$H$Ifb$gd47lCkde$$If4ֈh l#VWVWW t 6@44 ae4,,$,*,0,6,#$d$&@#$1$G$H$Ifa$b$gd47lC6,7,E,X7 d$&@#$1$G$H$Ifb$gd47lCkd$$If4ֈh l #VWVWW t 6@44 ae4E,Y,Z,^,a,d,g,#$d$&@#$1$G$H$Ifa$b$gd47lC d$&@#$1$G$H$Ifb$gd47lC&Zd$&@#$1$G$H$IfWD2`Zb$gd47lCg,h,i,j,Z99 d$&@#$1$G$H$Ifb$gd47lCkd$$Ifֈh l#VWVWW t 6@44 ae4j,p,v,|,,,6kd$$Ifֈh l#VWVWW t 6@44 ae4#$d$&@#$1$G$H$Ifa$b$gd47lCH-x-y-------".#.$.%.5.6.7.8.9.:.=.>.?..ʹ}nWB})j%h1%Uh1%UCJEHUaJmH sH ,jpH h1%UCJUV_HIaJnHo(tHhSh3CJaJmH sH %jhSh3CJUaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH h3h3CJKHaJmH sH h 6hKWCJaJmH sH +hdhKWCJKHaJmH nHo(sH tH hdhKWCJKHaJmH sH ,--#.$.:.>.?.O0P0x0||jX||||0d1$G$H$WD`0gdnJd1$G$H$WD`Jgd47,d1$G$H$WD`,gd47Fkd$$If t 6@44 ae4*Pd$&@#$1$G$H$IfWD^P`b$gd47lC ..'/)/!0"0%07080;0N0O0P0Q0a0b0c0d0e0§§۔~iQTF h3h3CJKHUVaJmH sH )jh3h3CJKHUaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH4hh6CJH*KH]aJmH nHo(sH tH1hh6CJKH]aJmH nHo(sH tH h3h3CJKHaJmH sH %ht"aCJKHaJmH nHo(sH tHe0f0g0j0l0s0w0y0001111#1$1%1&1'1,1/101ȵۢۏۢ|gS>gۢ)jhh3h3CJKHUaJmH sH 'jD-H h3h3CJKHUVaJ)jh3h3CJKHUaJmH sH %hK CJKHaJmH nHo(sH tH%ht"aCJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH%hfCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH %h CJKHaJmH nHo(sH tHx0y0110111$3%3V3W334444:?,d1$G$H$WD`,gdq&d1$G$H$WD`&gd3$d1$G$H$a$gd3,d1$G$H$WD`,gd3,d1$G$H$WD`,gd4701117181Q1R1T1111111 2 2 2222-2.202"3#3$3%3&3ȰȰȰȕȕȕۂoYD)jh3h3CJKHUaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hnCJKHaJmH nHo(sH tH4hh6CJH*KH]aJmH nHo(sH tH.hhCJH*KHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH h3h3CJKHaJmH sH %h1%UCJKHaJmH nHo(sH tH&363738393:3;3<3R3U3V3W3X3\3]3­t^K8%hCJKHaJmH nHo(sH tH%hnCJKHaJmH nHo(sH tH+h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hfCJKHaJmH nHo(sH tH%h CJKHaJmH nHo(sH tH)jh3h3CJKHUaJmH sH )jh3hK CJKHUaJmH sH /j >TF h3h3CJKHUVaJmH sH  h3h3CJKHaJmH sH ]3^3_3}3~3334444444˺pZD2#h3h35CJKHaJmH sH +h3h35CJKHOJQJaJmH sH +h3h3CJKHaJmH nHo(sH tH%h3CJKHaJmH nHo(sH tH%hCJKHaJmH nHo(sH tH%hqCJKHaJmH nHo(sH tH jFhCJKHaJmH sH  h3h3CJKHaJmH sH 4hh6CJH*KH]aJmH nHo(sH tH1hh6CJKH]aJmH nHo(sH tH 455557777C9I99::9:::::1;7;s<t<B=C===>>>>>>???@ĵp_ hdhyWCJKHaJmH sH &hdhyW5CJKH\aJmH sH  hqhyWCJKHaJmH sH  hqh3CJKHaJmH sH hK hqCJaJmH sH hK h>FCJaJmH sH h>FCJaJmH sH hqhqCJ]aJmH sH !hqCJaJmH nHo(sH tHhqhqCJaJmH sH $?@@!@0@7@nn%$d$&@#$1$G$H$Ifa$b$gdyWlC0HkdE$$If&& t 6@&44 ae4"d$&@#$1$G$H$Ifb$gdyWlC0@@7@8@O@P@T@U@@@@@@@@@AAAAPAQATAUAAAAAAAAABBBBPBQBTBUBBBBBBBBBHCICPC񹧖h\hyWCJaJmH sH  h\hyWCJKHaJmH sH #h\hyW5CJKHaJmH sH &h\hyW5CJKH\aJmH sH %hyWCJKHaJmH nHo(sH tH hdhyWCJKHaJmH sH hdhyWCJaJmH sH 27@8@9@:@<@>@@@B@D@lFFFFFF%$d$&@#$1$G$H$Ifa$b$gdyWlC0"d$&@#$1$G$H$Ifb$gdyWlC0okd$$If4F& t 6@&    44 ae4D@F@H@J@L@O@P@R@Y@Z@`@\\' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFf %$d$&@#$1$G$H$Ifa$b$gdyWlC0 `@f@l@r@x@~@@@@@@@@@@@' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFfe' d$&@#$1$G$H$Ifb$gdyWlC@@@@@@@@@@@@@@@@' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFf' d$&@#$1$G$H$Ifb$gdyWlC@@A AAAAAA%A+A,A2A8A>ADA' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFf' d$&@#$1$G$H$Ifb$gdyWlCDAJAPAQASAYA_AeAkAqArAxA~AAAA' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFf:' d$&@#$1$G$H$Ifb$gdyWlCAAAAAAAAAAAAAAA}FfȬ' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFfAAAAAAAAAAB BBBBBFf' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCBB%B+B1B7B=BCBDBJBPBQBSBYB_BeB' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFfV' d$&@#$1$G$H$Ifb$gdyWlCeBkBqBwB}BBBBBBBBBBBB' d$&@#$1$G$H$Ifb$gdyWlC' d$&@#$1$G$H$Ifb$gdyWlCFf' d$&@#$1$G$H$Ifb$gdyWlCBBBBBBBBHCICPCgHkd#$$If&& t 6@ &44 ae4"d$ &@#$1$G$H$Ifb$gdyWlC0Ff' d$&@#$1$G$H$Ifb$gdyWlC PCQCRCTCUCVCWCXCYCZC[C\C]C^C_C`CaCbCcCdCgChCrCsCCCCCDDBDCDvDwDDDDDEEFEGE{E|E~EEEE޽޽޽޽޽޽޽޽޽޽޽#h\hyWCJH*KHaJmH sH & jsh\hyWCJKHaJmH sH  h\hyWCJKHaJmH sH h\hyWCJaJmH sH #h\hyWCJH*KHaJmH sH  h\hyWCJKHaJmH sH  jshyWCJKHaJmH sH /PCUCYC]CaCeCiClCoCrC%$d$ &@#$1$G$H$Ifa$b$gdyWlC0 rCsC kdż$$If : `4 "&K t 6@ &((((44 ae4sCuCzCCCCCCCCC' |d$ &@#$1$G$H$Ifb$gdyWlC0' d$ &@#$1$G$H$Ifb$gdyWlC0 CC kd3$$If : `4 "&K t 6@ &((((44 ae4CCCCCCCCCCC' |d$ &@#$1$G$H$Ifb$gdyWlC0' d$ &@#$1$G$H$Ifb$gdyWlC0 CC kd$$If : `4 "&K t 6@ &((((44 ae4CCCCCCCCDDD' |d$ &@#$1$G$H$Ifb$gdyWlC0' d$ &@#$1$G$H$Ifb$gdyWlC0 DD kd$$If : `4 "&K t 6@ &((((44 ae4DDDD D%D*D0D6D;?l]I<2] *`ARxK~2;AZq*҅iukgq$b[6f*WqT+C_=PtscX~'!5%qQ$vU1 W'퇫~~&o;myhm5XXE_M{sx៍5OOR\UNr6;;|qukxǟ [zoxw@ ?I,y /7$(YH*~# n.uh^F<3g3$H'9,K6:￴7-Go?>W^!5i "Ulr>S2)}+hzvWwemLBF,ǒI'|Ҿ~~)7o9HPɭ-ǒu1-29CY-bjޭm?wү|C#Ge\YG%ݪ6w,R.9 GS@uU\>t+^ 3k^-FTc\cz_XtsOel,{.|5~zdψy]fUdt/o$ȷq^n C@;?)'¯|K> A]>kψ:Wx8 |AU9(' ],}%o8#sf['~~+eΉ /XKT^}5ieȈANY-i?j_? [>G&n^xT?k@A!̌1G+8F_0(<3gX|3eVXJγ nd,}zmŸ:?|sw Imils="cf\׏0jm>#x/)ƭxv=N $$0dēö'-~:?b ku |'>mt|z g gTU(]xc4 x Gn<-^6Y `sLH2k|[pkgzhXJ +"Emwc;&|kS,څ@#tmOmũg8bY7yy֯s_ i_|#S~z6ͫA跷I-ʹ >sO=L߳2|Iռ+o{gxCArJIs M]Tn(c[5sLƳk7ycGO>;KC.)Vn_>&x]:1ڝ#ugfH>aFi.dv~ Ahdus{22];A;xVSUB K+DKi@ɸcཽhً~9xfᦫI˨\^4fD{pX1>>x#;B_[Wk噶+CE2wnvFdZwa `{_ S,mU=б0G)t˹~&|s-\Ck~VFNT0u:u'=HV=amj q"\M^rxbH%<& 'S_=64Zm 6i뙧Ҡ9Ρp0ܝ0k|=*Vkzb0{eO̽7=hƇZC}-:W`\ȶ5Q%bPs^ΑGo׎ uytGV,]xQ35xwCtůYZR0] d to։.ԛJڬpU+Ծ/VDf>uj mMw^̖}NE;|x@1@,OA~p &$t~Xd=`.pZ_?}Ϗ>g_G#K'65E$u&P E"0YAr$>%OK{_Ɵg5m7Zίk, 22H:7ྨbMv >uPtS^TucjMjɪ Gğ ikxf|AZ>ke[6(VKR6>Wd, 7JAԵ_etk*e#G9i_CW*$899\v{׊^͹֥-Ok1)ePG O w/3@ 65D  @Ss]KƳ  GkmsGLw[mòaK 09?OZw /yx~4x.[/`Ӯ"ut9q5Qÿ/'Úv wuѓcWh8ݶ-$W,K/hoڢŅlHM`<g4~̿fmO/5g恦]Y-nV/ҶЅrr6 i㧈][RKQӴ]CCK1E~ƅKtrbeIO%h>Ce`'5G5 glR$nA+mָ kjZV|G*}tbr@;ʒri? !_^5+>:-gI[P/pAi4VD I'?kJKtq gR`𥌛uU׎A9l⠎F/:Ue a11؀pL7IӾ|XzMKrK[J$7v7yr%kmό?O_o{,2XwRk;T2"E%RO⿈oH?=?}6i34wZIhP)$/8=+^#|c>o"t#v0"Kd*#|1}A|m*tm5iWtA RX `Om_x3ᇆo^1])m H)3BAQU.[+ +k{{+XeUuFvTDv g'5n ( ( ( ( ( ( ( ( (H^wkڝ&oeXg,N9$;@u/~?iu7.{KN,,Ɏgxrb۟7٦Ӿem=WC`|f7~U!' b î'$aP1i,`pt [_$:P6Mё)ʼixo~.yk妙7>#%P8î};X#(cP(UU:*J߲Ÿ 72:w:0bΧ@UVG_#| 3Q]z|6yiO7܌$VhQ|'LrGBu nK{ps_2sSil?e/sYx_xCN];G^ޖyߚW1p+>!x'*ҼsN< '4k"nk?h'u5| &];S)dy,r[g [\z2Z/<=yor]&9h;[ϕ5$eH&;FYIgƏ:]BM*Gsh卝uaM}I@M5,~?4{4_XȒVPeXIakG[/h) $Za*6w(ҿP:w jhJ۶ǵc+,xc?:0 (!Y/h߄4F@Ь`t]q)l.Au9JV$;Nm+`X:/iK[G:/.|^c2s%?c| ǃF?EkBךlAݽvpĀdpkټC>|2J7tH$#[KHDhz!\C|RuAvlUY3k Yc;A߅Džm ƓU"/`B+v\\9WX 4e+{? d&-雑$0,$, _&U;o9:|1:Jͽt1ca;h*.^_ ^^:hන 3p9 /wWy7^罹yr5L4;%e%㏄񝯌4/~տEc7+ס ֤ 9w@9?"׿k_Z/jw/}ciضne-GاiO|߅ kLѴ-6m$I'$I$k_ux/֭miWC̓J ;pO EP_+x2|:߿_h])' AUaʻz^/F ^#ե0Z=܊2Ri + kO]BzR }(CKPєEx_A@~!lr?醇bɊ~;~0|_,~5Ǡ^atO R;[kQ %`NX~ztFhl!򎾇sYūIaoi%? 5moqoj3^_<~^)Gf>;[)5]{QY$hhJ]'<2_>-xgvyˬ"ʬd6nGt;蚎GZ]2C"ta$|1|YӾ7_Oע5kYf1۝oaO)|ߋS.|grZp7wc9 0*rohԺK׬Il4]F=5.tv6I$ERd GX8 - y9k^} Ӿ_uq(8 ;v.~ ~XlSYxo>-"Mi+qw@%]䜁__%chx~^e]:'."rIn,`nc^eiCj,W(BʂEW [J((e?s'웬ռ+s2˨xkPbm8xC&?8;WzP+(Ej_gWkjXH*d'r*@*b|`gi0^&Yџxtl `GMng|=z\`Iܞ^$6![3}/EPEPEPEPEPEPEVv< )y$($w ~4|-Z_77iRxXSI?? [ּYKԯvsT^v1>a0X(m{$Q>֝A'k rHFh mZoߩV*Inh5*whnunzt(Re8%kc ~ ?hX 2/WnQh==JFӮ m"y縙Q,O|7?!XOm<;mr>@f`g}1Zq{Ky]=3^|W1ÖVArcaML4dX-DT€/EQE|.Nq% ^<i:7W eɆ95}閺&iX6D0ƪT_6~ПTן_\}Z-2Z~hJ#Ӥ7\ _|W$Op Ux}k|֭"j-=#?QUWCc~"֌~.noV">RJgl,^J'.TNXu> ۞0'/# G0${8A#,exc~X~)Ow|,|Y|"cI9d*< ,Zż~Z:}WŽ,%2Aހ>bev5[UѮE}lą 4 u$`Dds~C~?civiZI& do<.= 0s?I?GᾱiQ)ZqKI')h%Nw[Sj˨֮ۨ,q09R(P߳w5VtC8 w0AEA'ĺ/8/"i,"nuLtR1˃Pt>9o ׆5=f6 _-,I_* i=?FKhk="ϻgvo1!U`PQW_&@~6|BPx"<ˋW&D<+(((( JM҈,*me2a 6Q~>[xSOȖKR D[J.OqI ɠ((((hُ~Ϭj#Ч09Ӫ*;JQc$F,H`O][(W uwuh Q` .\#$%5R/]|2yĖZ%A[1]Ȗr$c ǖE)>π|a PÅ c@2}ɭ}CPl,Ef8}k~֚U'%YEW7>s93]RUx^Zo7]xZ3ĥc]JIR0NHU'jQY*Yʆ:T  iTDH?Ǻ/k.פ]gYbFI &(4,;G"C?eoߌ;}j 7CN--Dw88d2cf 29|ExZ^Ūiw6&PU w'0|<Σ4iV+;w3پ~O~eZZ@IgGǀj=OUt˝F+ hi$q,xs_?SOo'Oo3ݫ)+_=k΍qkO,mԸ1,)$35m9*$3(~o$kxw~M i3jV2[70~_:Nׄ. m-c2m0pT+rrHPm%a^dT$ߩݾ {-D/UK 闷vjXjm'I#iZ7 e'% x|k>KhF<j׻PGς~^5>!<[˝*Gկ,dK%!mbV#54O?<76c7|1f]FKmn,hS.0_pAX՘zOڟß?Qc k >mZ/< Ђ|mx S~}5 _"}+,Q GyrW6F:Qo]G! vF'5u}_zω%þRKÙc==7oٓǾ˪\X=C3@h} a3??mZ+k_XHZDǚ8d댅+)F*F8 PEPEPEPk?]? /g< ;1j-Y>-8A# -8WW<_~bӵ ["RJ;4o`!=(+g񿈬M:K8˄k n>{5IĖ^'(Yr= (χ;Y7ŶXXSu}:BVH "#0@ AM)5o ~ D~o>gcrgB/˗ecgGAKWVo+Zg|!ک4̲M%yc)xFd(0:~x7ό?Mc᮫ay[+VAgd"lD`dds@( {x7F# zy>?2]i2݁V5?ʹ#7wXg {t/[Y1<~ ~';Zej OoW%CY|km5U#x.?> H<) :︻p@_HFeiAw yCd,?qc Ş0ӖGf=ch5-F7F9k_Ei%ƻu2K8o,` d~GG<j:LEZcJ$|4@|`r2 O_ڻ㖹=L >7W}+[hٚ@Nw&lM|E}S7>US7o|]j3i:v2JFx8ާs ~>7McOA$k1tBC &*촎h!KE$S`v q+?٧ki2q{'yW_;y&$Ixa IbHˏO_o~#Pψ KQWMHB MA|vtF Ϗ*/_>'m/Yo@Q_h151|;F|*ּ hse.AyxfSxb7fڟ<]i 0^۶|blYNX:(((((( XԴ]7Po%٦hYNiAS8e`}Aր?}>2v[ưƣW=^Cc仟kKgu8U!=]ޮ3`G I'[|!ח Ix,=$\'࿳ zn?9$x;:-/"{9ƚ9RGVA ܅*wNG|o|I|<|=O(-k~1\ CC,lQE9 1~^~s[Դ4p=qi)#Py~W~iw o5=:T1i3aBڒ>2w:v{ =$OIcWm"Gcrvc&ѿ}O<(!Gp+ǭ/K9nOAsڀ; Ch~5=WĚ)zDw#~dH`+!qA  z_pΟI?lMÿ5]] ~H짃LK4gg[[z准4K$K)[LE9XN<ɞXשx >/ K6ebᠰh`bcebWLOXYŲ.Nt5_4oU 1 =ψ-5 $bt,|2ߛx},+i{Ťo,v7`M <1XouCH]B;-<4Ea erGt륽mm2ݗc!g9 KxtNHƔquL,y&tSW€Ì@6j d^"c| |9B84 !VI "QRO? 2Xr%޹;m󟐊zᛢ6>:˒+׮[˧hQȧ2ݲ4T-#t1?Rjqk-Ƌxn[hZt<Bo-0++HE{Ʊ+c-=i`$弸"P5r 2w;0$4#kwwsx[-on$af#"vh?ޥ7cMkYӯRhC,ABAB۷²'_?,M;RH22cDJF~?^eqY5?5iV_:IZ\yA.yŒ((())hٷ]6>$x^KC&KGi$#hJ\.b>bOo|AB1gM_Z.^B].&$ AVL0 H|]KPUc|.~>X<kKk<_& b_n ş>u7Nj,qhk&nnb-BѴ_#;OڧRoe;h~ɩH׭M^l(xÀ>*: \G/َfƉHMt;G#(NE@fo*)?Ć NO,ZP Hb 0^(|u1oI6ņ1c\fH$# !+p +Ÿ>þ.lKYwlmdȧ(XЃ#8$ i3j!$W^>J$*Qӣ Y\@ %ْ09~QEQEQEQEWcgϋw62\"c:oFPߵL/ш&P^Vs̶rI"BDPH78~|o.>6>$% HeQ ~\{9 Eq=\ZF`%5hsYh>zշE {y|1j6圕;HeWoWk^mNԊ~1b? @Y.&$ʹl%HբG.B,>#KQ$_&Lx7/6auq7󾡮x[XrOE02NIC'=ΓivzΗr&gQZh <[|;%4ą,.dR4g$d Fb *[KIKG0gv'TI' ^(巈2w Icu]FJLe.8jB|iZ;m2 [HFy٭A$20-~  6M3N@4ݰ=T¯CZw?~$xΆ xn{3ϋ.e1HJXa~4|76$h&E%ɰả^gǃbsJz E q8罔O?JѼK U9_w6V:ѽfndEnc#h9vi> ާz6nWw H2rz ?j<9kjx7ML7nl$ew~ѿh??nW^# hWzQJ$0k$ mQf_q$KU=B'Nm<7$P/O [kLɃ\.q$C_HepǂWJe}oAK''Ð^ihZjX[4u|'3 d##a?}[SWzs|SB K8᷌`cHWtP֞ 7>3O %,-BiUgW߾ |2e烴ZR=}2W`Aeދڋ_OUG7P:zH#|<󐯇`'r߂|)[ɍ֧2CUl#$'+1FGoxÍ(U$$VRFp:_G\?/tˍcHQrYY9=hFll}'Fn-]PmvlI7&7G~j:.,1ǭOiC"$IdyApAt__x5{^)Q=ż,Y]Fx'%O_)}W:I N"UG@>1~8|i}GĠɷKly%UIp#/wo xZ;Do-܌6NH>R{ In$A 4H@'|.~? eQt׼b#'pp(`S(Cgq/aܸ9g_"Ϗ>kV]MǯpD7<('=GP=hd/^fi55cj5sm$oD"@q7#G>#|LM[焠RBEB4 erJoG&?;? *ֵ xoPcZ+d7 F^0 ns%|.P|W8^P\z7n~Ka`1x3#;qsa^c]%SEwxC͞H'-=)f^8sc[G'Լ_ t/ )w9UWWB֓I$L #7wOo, u-_ :jkɄB\̻٤.pTKL~))>x[YxC|#}V;&\[|mIKnl7g^tKay zqg]wƿ [Gp{yot{8 ^kّ~a'^axww~x3Wþ$g6ĶM>v$,킬кcap&eEe`Aƾ]~)5 Bv ~{q'qg_~.']cŐxGUyUӮ14I n[8\rh-' h~vyL ypŹRH?!/*Oʣu$:HCK$h?Mtoۨ蚚+*La xǦk~O? e$ZxR=p_jCӼEhZ$zd.n#fGHx?~K%tͻ9 *bpz1}+ᑣIVV Kmx(Y  X#( aῄx-/Śm>(7q? bm s̻_Wa_VV 5ܾrgvHJ2sH#R~Κ@~֯<'ѿg߉ڄlUH-}|WѴWF}fyXgKr'1X1RrQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@%-g+NVL5!{+!wHkjO~9ԼgÝ.(y} _]5,`X.9Ux#}E|'| $?_<e{xׇTV2ke(<ԈĀ 'a]G%nͣ:0*i g7Z٢A[yNm*[}~AC#D->9佷E20 %};Ծ/| _1|6Kx5E,K gDZO>Rځt$w@xbky%`rHcR6I8}5o[wÿ r8kCa5ΟƢ|m ?t!8S~?x+or?ǢpLGK$k$Gf~??_\.aάɨ0ycD@OV8A>//x^*Fkl)2g |mPX|_&k_Oׯaz$U\I澄t/[P&ɧjr[<2JK#r>dh z!ඵxk[m]ڼ%~׊^&V 0n:)n/ xW 2=:kIc~mk$ U>Zl'~/{4cmCVKFhk6m*H ^-⟆){a>1u?6?uYfIbB9;"~$PkSᯋ:~xEZW@|tdH3k ǿ_{X~ x5v[Mdsedǀ1iH~$񮁫Yk~OiL.m;̌637xï N<;DOCk-q-Rۭ LmeXN{ς-nxOÆG(||͚ l12;Xyt_#~hMb;5d^0jB؍Yy, -dKI~nF&]H[ks#T:Oy^k NQ-K,NnV@j xA_BMj ]uxyn6"V: gHg]KLV mii4n(PۖUό J7 E|O0<7xOZm&dQ o\;IuW@MsW_j o}l2 hde`3FN0pkieKac\ >૎j(ʾ? ~G\𷆼xs\Դ% cz\3 cw ~i xSúO46Z5VWq 8ҷh(((((((((((((((((((((((((((((((((((2$$If!vh5l 55h5g585d #vl #v#vh#vg#v8#vd :V 4 6Pm0&+++++5l 55h5g585d /  /  4e42$$If!vh5l 55h5g585d #vl #v#vh#vg#v8#vd :V 4 6Pm0&+++++5l 55h5g585d /  / 4e4$$If!vh5&#v&:V  6Pm0&5&/ 4e4$$If!vh5&#v&:V  6Pm0&5&/ 4e4$$If!vh5&#v&:V  6Pm0&5&/  / 4e4$$If!vh5&#v&:V  6Pm0&5&/ /  4e4$$If!vh5#v:V  6@05/ / 24 e4$$If!vh5&#v&:VC t 6@0&5&/ 4 e4$$If!vh5 55g5 5K#v #v#vg#v #vK:VC t 6@0&5 55g5 5K/ / / 4 e4$$If!vh5 55 5K#v #v#v #vK:VC t 6@0&5 55 5K4 e4$$If!vh5 55 5K#v #v#v #vK:VC t 6@0&5 55 5K4 e4$$If!vh5 55 5K#v #v#v #vK:VC t 6@0&5 55 5K4 e4$$If!vh5 55 5K#v #v#v #vK:VC t 6@0&5 55 5K/ 4 e4$$If!vh5&#v&:VC t 6@0&5&/ 4 e4$$If!vh55555#v#v#v:VC t 6@0&,555/ / 4 e4$$If!vh55555#v#v#v:VC t 6@0&555/ 4 e4$$If!vh55555#v#v#v:VC t 6@0&5554 e4$$If!vh55555#v#v#v:VC t 6@0&5554 e4$$If!vh55555#v#v#v:VC t 6@0&5554 e4$$If!vh55555#v#v#v:VC t 6@0&5554 e4$$If!vh55555#v#v#v:VC t 6@0&555/ 4 e4$$If!vh5&#v&:VC t 6@0&5&/ 4 e4Dd t#  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~#Root Entry/ F@hData WordDocument.KVObjectPoolpQ_1219129345"FpQ`TOle CompObjfObjInfo  !"#$%&'()*+,-./013456789:;<?BCDEFGHIJKLMNOPQRSTUVWYZ]`abcdefghijklmnopqrstuvwxyz{|}~ FMicrosoft Equation 3.0 DS Equation Equation.39q5F    |."System|ra0m |- I@Times New Roman-~OlePres000 n Equation Native 2_1210925137 F`T`TOle =,--.  @Times New Roman- .vSymbol- 2 5 (BvSymbol- 2 w)BvSymbol- 2 (BvSymbol- 2 )CvSymbol- 2 *(BvSymbol- 2 *D)BTimes New Roman-2 `T ijklmno !!4!T;; 2 ` in!; 2 `# in!; 2 `gik!42 `ijklmno !"4!S<; 2 `pIII'''2 Lijklmno !!4!T;; 2 =mS 2 II''2  ijklmno !!5 T<: 2  mT 2 o I' 2  mT 2 p l 2 k4 2 ?j! 2 i!2 ijklmno !!4!T;;8Times New Roman- 2 . eY 2 .\ ad 2 . pd 2 .)l9 2 .zN 2 .NzN 2 . bd 2 xY 2 xY 2 ]bd 2 xY 2 u xY 2  bd 2 y Pz 2 W 2 GBz 2 Sd 2 !G 2 1yY8Symbol- 2 .d +n 2 . +m 2 . +n 2 .+m 2 .G-n 2 .v+n 2 +n 2 -n 2 +n 2 t-m 2 u +n 2 +n 2 D+n 2 +m 2 +n 2 +n 2 ?=n8Times New Roman- 2 $)C 2 1d 2 (CTimes New Roman- 2 {-2;8Symbol- 2 ms"System------'"System|mmE#mh0-'''8@Times New Roman- 2 ~ [-fObjInfo@OlePres000 AEquation Native X   =T ."SystemT ra0m T - I@Times New Roman-=T ,--.  @Times New Roman- .8Times New Roman- 2 eY 2 ad 2 Z 2 po 2 Z 2 l8 2 Z 2 cX8Times New Roman- 2 i8Times New Roman- 2 ydTimes New Roman- 2 a: 2 tpA 2 l!8Symbol- 2 [+m 2 [+m 2 G+n 2 +n 2 =m"System------'"System|mmE#mh0-'''8@Times New Roman- 2 ` T = [-o   y=X+Z c c+Z p p+Z a a+e FMicrosoft Equation 3.0 DS Equation Equation.39q 3   _1210926225(F`T`TOle [CompObj\fObjInfo^OlePres000_8 Equation Native f_1219129508F`T`TOle      W !P"O$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNQSRT^UVXYZ[\]`abcdefghijklmnopqrstuvwxyz|}~  N ."SystemN ra0m N - I@Times New Roman-O ,--.  @Times New Roman- .8Symbol- 2 | pM 2  pM 2  pM 2 Z pM 2  pM 2  pM 2 pM 2 |pM 2 pM 2 pM 2 ZpM 2 pM 2 pM 2 pM 2 s=pn 2 pM 2 )pM 2 jpM 2 pM 2 pM 2 pM 2 +pM 2 )+pM 2 j+pM 2 +pM 2 +pM 2 +pMTimes New Roman- 2  2p; 2 H 2p; 2 2p; 2 2p;8Times New Roman- 2 j0pd 2 jD0pd 2 j0pd 2 > 0pd 2 >D0pd 2 >0pd 2  0pd 2 0pd 2 0pd 2 0pd 2 0pd 2 D0pd 2 !vardYCTimes New Roman- 2  ep4 2  ep4 2 pG pp; 2 pbpp; 2 Dlp! 2 Dlp! 2 ap;8Symbol- 2 j spy 2 >spx 2 ;spy 2 spy8Times New Roman- 2 jZ IpN 2 >IpN 2 IpN 2 mAp 2 _epZ 2 4vppo 2 lp8 2 |apd"System------'"System|mmE#mh0-'''8@Times New Roman- 2 _ O  p[-JZ|& varacpe[]=A a2 0000I c  c2 0000I p  p2 0000I e  e2 [] FMicrosoft Equation 3.0 DS Equation Equation.39q)9k`    ."SystemCompObjfObjInfoOlePres000 Equation Native ra0m - I@Times New Roman-,--.  @Times New Roman- .-h hpSymbol- 2 (p>pSymbol- 2 )p=hhpSymbol- 2 (p>pSymbol- 2 +)p>k3k}pSymbol- 2 l(p>pSymbol- 2 )p>pSymbol- 2 (p>pSymbol- 2  )p>Times New Roman-2 S ijklmno2Q882 ijklmno 2R87 2 Y sp, 2 zmpQ 2 'kp2 2 YmpQ 2 Hsm,Q2 ijklmno2Q88 2 III%%%2 ijklmno2Q88 2 lp 2 TII%%2 x ijklmno2 Q87 2  lp 2 \ Ip% 2 lp 2 kp2 2 jp 2 tip 2 ijklmno2 Q87@Times New Roman- 2 4pp` 2 ,zpK 2 zpK 2 pbp` 2 xpU 2 :xpU 2 bp` 2 xpU 2  xpV 2 bp` 2 Ppu 2 Wp 2 tSp` 2 Gp 2 /ypU@Symbol- 2  epT 2 apy 2 mpm@Symbol- 2 ] +pi 2 Fp 2 `+ph 2 +pi 2 -pi 2 +pi 2 '-pi 2 a+pi 2 -pi 2 i +pi 2 +pi 2 a+pi 2 +pi 2 X+pi 2 =piSymbol- 2 p 2 pSymbol- 2 YA=p= 2 Y4=p=Times New Roman- 2 L*p8 2 =3p8 2 Yy1p8 2 Yv0p8 2 |e2p8@Times New Roman- 2 )p@ 2 B4p` 2 (p@"System------'"System|mmE#mh0-'''8@Times New Roman- 2  p[-<¹P= y ijklmno =+G i +S j +W k +P l +b I  l x ijklmno "2x()+b II  l x ijklmno "2x() 2 +b III z ijklmno "2z()+ smm=0k "  ms=13 " p ijklmno* ()+ ijklmno FMicrosoft Enaba 3.0 DS Equation Equation.39q d  H."Systemra0m - I_1179926017F`T`TOle CompObj dObjInfoOlePres000!Equation Native _1210926242$F`T`TOle @Times New Roman-G,--.  @Times New Roman- .vSymbol- 2 (BvSymbol- 2 |)BvSymbol- 2 (BvSymbol- 2 )B-8Times New Roman- 2 M1d 2 2dTimes New Roman- 2 minY!; 2 maxY4; 2 minY!< 2 *;8Symbol- 2 M-n 2 -n 2 -n 2 M,=n8Times New Roman- 2 ]pd 2 3pd 2 2pd 2 pd 2 M7pd"System------'"System|mmE#mh0-'''8@Times New Roman- 2 MG [-°xq p * =2p"p min ()p max "p min ()"1 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj#&fObjInfoOlePres000%'J Equation Native n#3 "    ."Systemra0m - I@Times New Roman-,--.  @Times New Roman-       !"#$'*+,-./0123456789:<>?@ABCDEGHIJKLNOPQRSTUWXYZ[\]^_`bcdefghijklmnoqrstuvwxyz{|}~.8Symbol- 2 zpM 2 'zpM 2 gzpM 2 zpM 2 zpM 2 zpM 2 pM 2 'pM 2 gpM 2 pM 2 pM 2 pM 2 ]"p 2 1K p 2 p 2 %p 2 s=pn 2 pM 2 )pM 2 jpM 2 pM 2 pM 2 pM 2 +pM 2 )+pM 2 j+pM 2 +pM 2 +pM 2 +pMSymbol- 2 pZTimes New Roman- 2 6ip 2 c pp; 2 c pp; 2 8` lp! 2 8Jlp! 2 ap;Times New Roman- 2 0p; 2 c 0p; 2 8! 0p; 2 0p:8Times New Roman- 2 !vardYD8Times New Roman- 2 ]RRp 2 ] 0pd 2 ]0pd 2 ]0pd 2 10pd 2 1 Kp 2 1] IpO 2 10pd 2 10pd 2 0pd 2  0pd 2 mKp 2 IpN 2 0pd 2 0pd 2 0pd 2 0pd 2 Kp 2 mAp 2 _epY 2 4vppo 2 lp8 2 |apd"System------'"System|mmE#mh0-'''8@Times New Roman- 2  p[-R؀n varacpe[]=A"K 0a 0000I c "K 0c 0000I p "K 0p 0000" " R 0i [] FMicrosoft Enaba 3.0 DS Equation Equation.39q_1179926026 *F`T`TOle %CompObj),&dObjInfo(O T *  =f."Systemfra0m f- I@Times New Roman-=f,--.  @Times New Roman- OlePres000+-)|Equation Native ;b1Table9_WSummaryInformation(0=,.Times New Roman- 2 TpA 2  ap; 2 ap:8Times New Roman- 2 pKp 2 Cp8Symbol- 2 TFp 2 Fp 2 4=pn"System------'"System|mmE#mh0-'''8@Times New Roman- 2 mf= p[-Fh] C a =K a  TOh+'0(4HT`p     b  c $A? ?3"`?2EQޛ;i U;!y `!Qޛ;i U; 0# xڝ_HA3w{ݑ!AWQF/ ,$Bк;T!'ǂ!#B'L!2zVz3򚙝v37vovgRֱb=qa\&buPj(`#)HrxLZ{;r)W(DzױA/bjB5S?+,r*h{.38aVcɏN9:YuD@3 M=NohZ3:8sqt܇;sa1.5O |B>j}0-a5.aF[ 958"p]Ku;Plj4ya ݿ_V3ݗZI7Ce;"s,>WUy4RH˲WP"g+_´:S,7k\-Yed&hrFpor)-3[mr ={(}cl_D)w ~ƠG+ -EùQ݈Q/"iS #o|]f X=c.x!H.?g{)ݯ8[#bV.FFJk o|z?(׃w8 `!~tbߴ1Rb>8  txڥkA6mcD"z"RbzH{x*+ZL[L1,"x ЃZoTݧu8TPy+Z Uyc|s4;$$If!vh5#v:VC t 6@05/ 4 e4$$If!vh5#5V5W5V5W5W#v##vV#vW#vV#vW:VC4 t 6@0+,5#5V5W5V5W/ / 4 e4 $$If!vh5#5V5W5V5W5W#v##vV#vW#vV#vW:VC4 t 6@0+,5#5V5W5V5W/ 4 e4$$If!vh5#5V5W5V5W5W#v##vV#vW#vV#vW:VC t 6@05#5V5W5V5W/ 4 e4$$If!vh5#5V5W5V5W5W#v##vV#vW#vV#vW:VC t 6@05#5V5W5V5W/ 4 e4$$If!vh5#v:VC t 6@05/ 4 e4gDd D%h  s *A? ?3"`?2eKE Hfi `!eKE Hf  *(MxڝV_HAݻ;Nz ó8A<.V΋Hz D_ ·@zӂRڙf{|~̷B  ,ϡ?22-aAu1,΃\ȯ[by |:׭s)@N6b<#C.}u jHkAV@~4D>%u'x[^WϿ''\3帊hM0Wr~)3[;Pm\ \@8a 46lr!N<*Ĥ,YxívWLiz'?.^fzfB zy`ūn,Sx:|[kR-w=*t+v&ndF~jw [JuQUWǝɼuf|]?JHi%'zyXz݊FI3.&U3&CzҨeH͚+kZgd wG|O3c9 duBVVLJɛc׋~o0\)!1c V|2`ø ڳ O)0<+a|㌺ξwr?'/qğE[MBuyמwb|:q2} *Vd[лgaXli?ӊ};a*>!2wUG ouΣyDeHxVVuˤs*͸Dx0k0 Zc>#9ZU1DdG L7u=c?Gz D Dd p!V  c $A? ?"22vi9U)WЍ `!vi9U)W `xcdd``vb 2 ĜL0##0KQ* WÔ+d3H1)fY؁h PT obIFHeA*ݿX=aR& Ma`h~Í.4n @@ڈUy3p? 2BwNPsW1Od&ڽĻw-{A_L;@q&¤T b Y>74c@膐br<n`B[~ +_~UO=02R.\#Nf +73/& I; `! LQ7>; @P&0= xڥ?hQ{'KbcX)Xѡh3^1iCL[K N% ;8*A#߻{9ޯ6zɽ}~Iʨ@$CcA-JhjV/%~IY'2uVhΐf~Z`vt6FI5z']ϽK{`OJ+=nM|0L+#o^۩3F*xE^Cz5`(ΓM=߂5{FŮ(!Bo O뿎rki7>m.{O!7 :'ᴾt.vy/ˮcYwGDyuǧI9ߧSggg6IiܗKzv_SJx 4ĤgI(==MVds6vW '7W@Dd O|jUV  c $A? ?"2~]Ԫ_a-`\rI `!j~]Ԫ_a-`\;`* 08xcdd``ed``baV d,FYzP1n:! KA?H1 @P5< %! `3);aV&br<??bUi,,@u@@0,f p#y12p{0c] 1+sspU-(_{pČ`m+ F0y{@qI)$5d/P"CXYQ|i $$If!vh5&#v&:VC t 6@0&5&/ 4 e4$$If!vh555#v#v#v:VC4 t 6@0&++,555/ / 4 e45$$If!v h555555555 5 5 5 #v#v#v#v :VC4 t 6@0&++, 5555 / 4 e42kd֗$$If4   &:Nbv #&  t 6@&000044 ae4"$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 / 4 e4/kdA$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kdݡ$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd$$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kdk$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd@$$If   &:Nbv #& t 6@&000044 ae4$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 4 e4/kd$$If   &:Nbv #& t 6@&000044 ae4"$$If!v h555555555 5 5 5 #v#v#v#v :VC t 6@0&5555 / 4 e4/kdθ$$If   &:Nbv #& t 6@&000044 ae4$$If!vh5&#v&:VC t 6@ 0&5&/ 4 e4l$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&, 5K5555555 5 / / 4 e4X$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 / 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4J$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 4 e4X$$If!v h5K55555555 5 #vK#v#v#v#v#v#v#v #v :VC t 6@ 0&5K5555555 5 / 4 e4$$If!vh5&#v&:VC t 6@ 0&5&/ 4 e4$$If!vh5#v:VC t 6@05/ 4 e4$$If!vh5W5}#vW#v}:VC4 t 6@0+,5W5}/ / 4 e4$$If!vh5W5555#vW#v#v:VC4 t 6@0+,5W55/ 4 e4$$If!vh5W5555#vW#v#v:VC t 6@05W55/ 4 e4$$If!vh5W5555#vW#v#v:VC t 6@05W554 e4$$If!vh5W5555#vW#v#v:VC t 6@05W55/ 4 e4Effects of the Pattern of Energy Supply on the Efficiency of Nitrogen Utilization for Microbial Protein Synthesis in the Non-L Taegu KoNormaluser4Microsoft Office Word@[@M@n@: P՜.+,0| hp DocumentSummaryInformation8FMacros7`T`TVBA4`T`TdirM) _Seoul National University0]G Effects of the Pattern of Energy Supply on the Efficiency of Nitrogen Utilization for Microbial Protein Synthesis in the Non-L %0* pHdProjectQ(@= l 0,RC J< rstdole>stdoleP f%\*\G{00020430-C 0046}#2.0#0#C:\WINDOWS\SYSTEM\StdOle2.Tlb#OLE Automation^DNor(malDNBrmaE b *\C - D<!Of(ficfO`ficf!G{2DF8D04C-5BFA-101B-BDER5fAAd42fgram Files\Microsoft 6\MSO9.DLL#  9.0 Ob LibraryCcaThisDocumentG Th1sDEcuEenj* 2 HB1BE,!c"B+B EgertonLabGgUr o@"LibL 2V !}!c!)@!#wccEgertonLab35VThisDocument6a_VBA_PROJECTpM PROJECT28xMExx&Attribute VB_Name = "EgertonLab" ccxME (S"SS"<(1Normal.ThisDocument8(%HxAttribute VB_Name = "ThisDocument" Bas1Normal.VGlobal!SpaclFalse CreatablPre declaIdTru BExposeTemplateDeriv$Custom izC1as *\G{000204EF-0000-0000-C000-000000000046}#4.0#9#C:\PROGRA~1\COMMON~1\MICROS~1\VBA\VBA6\VBE6.DLL#Visual Basic For Applications*\G{00020905-0000-0000-C000-000000000046}#8.2#0#C:\Program Files\Microsoft Office\Office10\MSWORD.OLB#Microsoft Word 10.0 Object Library*\G{00020430-0000-0000-C000-000000000046}#2.0#0#C:\WINDOWS\SYSTEM\StdOle2.Tlb#OLE Automation*\CNormal*\CNormal-D< *\G{2DF8D04C-5BFA-101B-BDE5-00AA0044DE52}#2.2#0#C:\Program Files\Microsoft Office\Office\MSO9.DLL#Microsoft Office 9.0 Object Library  0,RCcThisDocument0141022886ThisDocumentcEgertonLab0241022886EgertonLabc}8iG@;c[xZIB}LH %WordkPVBAPWin16~PWin32PMacPVBA6#PProject-Pstdole`PNormalPOfficeuP ThisDocument*CJKHOJaJ\@\ ȩ 6$$d4$7$8$@&a$5CJOJPJaJnHtH>@> ȩ 7$$d@&a$5OJB@B ȩ 8$d4$@&G$H$5OJF @F ȩ 9 $d4$@&G$H$ CJOJ QJ (A@( 0 } 4Fi@F \ \ :V 44 la $k$] L 6@6 \ 0 VD^ 4@4 8 8!G$OJ0 @0  8!G$4)@!4 t 85CJOJQJDY2D 8 lp-D M OJPJ QJHB@BH > 8,8 Char17$8$CJOJPJaJ(U@Q( Xt|l>*B*hS@bh 8 0 3,$ 001$4$7$8$^`0a$CJKHOJaJjC@rj 8 02$ @>dh1$4$7$8$^`>a$CJKHOJaJ6V@6 Ŵ Xt|l >*B* phNP@N 8 2 d1$4$7$8$CJKHOJtH O $ _ @`  @`"%(+.2 5@8`;>ADGK N@Q`TWZ]`d(1$4$7$8$H$a$!B*OJ_HmH nHphsH tHO  0$ _ @`  @`"%(+.2 5@8`;>ADGK N@Q`TWZ]`d(1$4$7$8$H$a$!B*OJ_HmH nHphsH tH*W@* u@ MѤ¸5\"X@" p6]XQ@X 8 3-d4$7$8$]-CJOJ PJQJ aJnHtHHZ@H ̹$1$4$7$8$a$CJKHOJ QJ aJZR@Z 8 0 2 4d7$8$^`4CJOJPJ aJT>@T ȩ!$4$9D`a$5;CJOJPJaJnHtHF"@F X"d4$G$H$WD` 5OJ\e@2 HTML PreformattedI#$ 2( Px 4 #\'*.25@91$4$7$8$a$B*KHOJ PJ QJ aJphFBF T MѤ¸$$1$4$7$8$a$ KHOJaJ&'Q& T 8pCJ@Ob@  1&4$H$5CJKHOJPJaJdOrd xl28"'$dd1$4$7$8$[$\$a$KHOJPJQJaJnHo(tHRR  MѤ¸($1$4$7$8$a$KHOJaJmH sH tH &&&  8pH* (@  8pOp Body Text 21+$d1$4$5$9DH$a$5CJKHOJPJaJnHtHPOP ????,$4$5$9DH$a$KHOJPJaJnHtHdT@d ] MѤ¸!-$4$7$8$]^a$5CJ(OJPJaJnHtHlOl Firstheading.$dG$H$a$&5OJQJ^J_HmHnHsH tHuzOz Table Heading(/$ +d]+^a$56CJOJQJaJmH sH vv ( 270$ $ 0d*$4$H$]^`0a$KHOJ PJQJ aJnHtHff ( 7'1$0d*$4$H$^`0a$KHOJ PJQJ aJnHtHbO"b 6AutoList12$`1$7$8$H$^`a$CJ_HaJmH sH tH bO2b 2AutoList13$`1$7$8$H$^`a$CJ_HaJmH sH tH dOBd references401$4$7$8$^`0CJKHOJaJhtH n^@Rn | (),\ ()"5$dd1$4$7$8$[$\$a$CJKHOJPJQJ^JJObJ 6$a$OJPJ_HhmH nHsH tHTORT "7$dd1$4$7$8$[$\$a$CJKHOJPJQJ^JFOF 8 Char CJKHPJ_HmH nHsH tHO  49$ _ @`  @`"%(+.2 5@8`;>ADGK N@Q`TWZ]`ld(1$4$7$8$H$^`la$!B*OJ_HmH nHphsH tHFORF ;N2":$dd1$4$7$8$[$\$a$CJQJPOP :N2 Char,CJKHOJPJQJ_HaJmH nHsH tHJORJ .T1"<$dd1$4$7$8$[$\$a$ CJKHQJJOJ 3PW Char(CJOJPJQJ_HaJmH nHsH tH\O\ ,+8 Char1 Char Char CJKHPJ_HmH nHsH tHNJ@N C?$4$7$8$a$5CJOJ PJQJ \nHtHZOZ { 8 Char1 Char(CJKHOJPJ_HaJmH nHsH tHPOP Ms0A1$7$8$H$$CJOJ^J_HXaJmH nHsH tHO" K pȩ(20)|B$ _ @`  @`"%(+.2 5@8`;>ADGK N@Q`TWZ]`d1$7$8$H$a$-B*CJ(OJPJ_HaJ(mH nHphsH tHr@3r \ l 7:VC0C$1$4$7$8$a$XOAX G\medium-normal1#56CJOJQJ\]^JaJo(bRb ] ijй MѤ¸E$1$4$7$8$a$ CJKHOJQJ^J_HaJtH NON tPa14F$d4$H$a$CJKHOJPJnHtHjOrj *7WW-Body Text 2G$1$4$7$8$a$CJKHOJaJhmH sH tH bOb *7 Text bodyH$1$4$7$8$a$"5CJKHOJaJhmH sH tH O *7WW-Body Text Indent 2(I;dh 1$4$7$8$^`;CJKHOJaJhmH sH tH DOD iCStandardJCJ_HhmH sH tH :O: iCStrong Emphasis5bOb iC WW-Block Text&L$7hd]7^h`a$mH sH \O\ iCWW-Body Text Indent 3M$^`a$$O$ bemph128O8 sonTable ContentsO\@ z-X %P$&d1$4$7$8$Pa$0<B*CJKHOJPJQJ^JaJnHphtH]@ z-X DŘ%Q$$d1$4$7$8$Na$0<B*CJKHOJPJQJ^JaJnHphtH _                _V!?JKLMNOP^_`a3456/01>? $%4;LRSfkc !1@DIMNQXbmyz !-.4:DO[\l v"w"""###$$ $$$$$$$$$*$0$6$7$E$Y$Z$^$a$d$g$h$i$j$p$v$|$$$%%#&$&:&>&?&O(P(x(y())0)1)$+%+V+W++,,,,2788!808788898:8<8>8@8B8D8F8H8J8L8O8P8R8Y8Z8`8f8l8r8x8~8888888888888888888888888889 999999%9+9,92989>9D9J9P9Q9S9Y9_9e9k9q9r9x9~999999999999999999999999999: ::::::%:+:1:7:=:C:D:J:P:Q:S:Y:_:e:k:q:w:}:::::::::::::::::::H;I;P;U;Y;];a;e;i;l;o;r;s;u;z;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<< <%<*<0<6<<<B<C<E<J<O<T<Y<^<d<j<p<v<w<y<~<<<<<<<<<<<<<<<<<<<<<<<<<<<== ======$=)=.=4=:=@=F=G=J=O=T=Y=^=c=i=o=u={=|=>>@E{HBICIIIUIVIWI[I_IcIgIhIlIsI{IIIIIIIIIIIIIIIIIIIIIIIIIKNQQQQ]R*SSTUVVWuX?YYZM[[*\+\,\-\.\/\0\1\2\3\4\5\6\7\8\9\:\;\<\=\>\?\@\A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z\[\\\]\^\B]^^ ^!^"^$^%^'^(^+^-^.^9^{^|^^^^^^^^^^^^^^_0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0000 0 0 0 500 0 "0000 0 00 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 00 00 00 0 0 0 00 00 00 00 0 0I00 qI00I00 qI00I00I00 I00@0@0I00 @0@0I00|Pq@0I003B@0I00@0@0I00`4B@0I00I00I0 ZIc[7 !\"$L%()*,H-.e001&3]34@PCEJOGS[yag9PP47<>@BCINY[\]^`ahjkmnopr~JM^`3 6 ?$;SM!X!z!!!!" "."[""w*,,6,E,g,j,,x0?7@D@`@@@DAAABeBBPCrCsCCCCCDDBDCDvDwDDDDDEEFEGE{E|EQRRRRS3S^SbeegiPP589:;=?ADEFGHJKLMOPQRSTUVWXZ_bcdefgilqstuvwxyz{|}~P6 w"""$&5&7&P(a(c()#)%)%+6+8+_::::::: Zac!!!T   12O2$3C4rȏHb$ͮ{ I8w9`2$`se^YFI;v|ۗ4ob$`, RšXF+t       A@ A5% 8c8c     ?1 d0u0@Ty2 NP'p<'pA)BCD|E||s " 0e@        @ABC DEEFGHIJK5%LMNOPQRSTUWYZ[ \]^_ `abN E5%  N E5%  N F   5%    !"?N@ABC DEFFGHIJK5%LMNOPQRSTUWYZ[ \]^_ `ab@1d 0(  B S  ?_< ̳< U < D2 !<"< ܵ#< 4$<|%< &<'<$(< )<䳞*< t +<  ,< -<4 .< t /< 0<  1< 4 2<t 3<  4<  5<|5!##+%/2*S6[6[<[[[[.].]_     )22 $.552-S:[>[>[[[[4]4]_   i*urn:schemas-microsoft-com:office:smarttagsState0http://www.5iamas-microsoft-com:office:smarttags_*urn:schemas-microsoft-com:office:smarttagscountry-regionhttp://www.5iantlavalamp.com/h*urn:schemas-microsoft-com:office:smarttagsCity0http://www.5iamas-microsoft-com:office:smarttagsZ*urn:schemas-microsoft-com:office:smarttags PlaceNamehttp://www.5iantlavalamp.com/Z*urn:schemas-microsoft-com:office:smarttags PlaceTypehttp://www.5iantlavalamp.com/V*urn:schemas-microsoft-com:office:smarttagsplacehttp://www.5iantlavalamp.com/8*urn:schemas-microsoft-com:office:smarttagsdate  10200637DayMonthYear P]>FZachiwy}'+ LS/5>@bj!!!!!!""##<#>#`#k#& &K'S'q'y'!(%(7(;((())**-*0***W+\+m+x+++++|,,l/r///1122y22336666MFVFyGGGGbHkHHH#I+IIITIKK|LLLLMMMMQQQQQQ>RDRLRORRRRRSSSS*S-SSSSSSSxT|T~TTTT)U0U;UDUwU{U}UUUUUUV VV#V1V6VVVVVVVtWxWzW}WWWWWXXY Y%Y)Y+Y.Y?YDYMYRYZYaYYYYYYYoZsZxZ|Z~ZZZZ[ [ \\\\{\\.]4]]^^ ^ ^^"^"^$^$^%^%^'^(^*^+^-^.^9^@^V^Z^_^c^e^h^^^^^^^^^^^_6@c>C>@%%W+\+,,JJQQ>RER;S~SBTFTTTUUUUV7VVVVVWWuXX?YbYYYYYZZM[e[[[ \\^\\B]Y]"^"^$^$^%^%^'^(^*^+^-^.^^^_33333333333333333333333333333!a?;u!\#7$Z$$:&?&P(y(())1)8:I;|=sH{HCIIQQFRRSSuXXY?YiZZM[f[^\\B]`]]^"^"^$^$^%^%^'^(^*^+^-^.^9^z^^^^^^^^^^^_W+\+"^"^$^$^%^%^'^(^*^+^-^.^^^_,0#2DNGF^h;wJk5JXL_OD_Vk2Z^b] ob7]_'^e:ukp  4vRy\^`\o(H\H^H`\)\^`\.\^`\.4\4^4`\) \ ^ `\.| \| ^| `\. \ ^ `\)\^`\.hh^h`o(H\H^H`\)\^`\.\^`\.4\4^4`\) \ ^ `\.| \| ^| `\. \ ^ `\)\^`\. \^`\OJQJo(l H\H^H`\OJQJo(n \^`\OJQJo(u \^`\OJQJo(l 4\4^4`\OJQJo(n  \ ^ `\OJQJo(u | \| ^| `\OJQJo(l  \ ^ `\OJQJo(n \^`\OJQJo(u\^`\o(.H\H^H`\)\^`\.\^`\.4\4^4`\) \ ^ `\.| \| ^| `\. \ ^ `\)\^`\.\^`\o(H\H^H`\)\^`\.\^`\.4\4^4`\) \ ^ `\.| \| ^| `\. \ ^ `\)\^`\.W^`Wo(^`o(.^`o(..<^`OD_V;wJ5JS?Cxt1AT   - F6 : [ s K ni K&  J  j  $ 5 \-=NY~2.;YY`bC^cd| 0 2Sjukz}5 C>_otw$,~G\Mk(z2x[!=X^mt9RN}(*7<%g)1:@Gv b){!3@_s 9{ !hDdi r~7)K'f@h_F?O 66|-0DPlB QK 9R !!*!;!9;!Z!]!M%"."Y"c"c"%w"#>##$#[1#3H#T#$8$B$BD$P$n$% )%.%V%b%n%v%9&Q&q&&V'''$.'.'P'h'd (!)/)B)Z)q):k*+ +O+d+,I=,Kw,F-(-T-K.L.#Q.U.:/)/2@/0p/%s/u/#0<*0.0>0 M0PR0y0 1X2-2-2_120 3}4U7494J4=&5 6!#6Q6Ar6z67>27n7C}7)8N89BU9:%:::I:@x:=;G;Q;<c"<;<uN<9^<r<|< =NC=U=~j==5>Yz>? ?KV?i@X&@c@j@sAAKArWA"B 7B}BBCCX9CcKCiCxCD,'DO7DTjDnDEvEGEbF#F8|FTGuHHf&H)H>HFHyHIGI,I)6I@IeIlqIKtIKJ-J.J'>JCKJlJ6KKq KAKUKMpKpqK$L@L-MM=MhQMMZMi^MuM|M}MNGNRN?VNWNyuNO8CO]fOjOzqOxP QIQaQ:}Q8 RRFRfVR"uRxRS'Sh/SaS$gTU1%U+dpdKme~efr;fPf?aftfxfUzfzgshhHhMh"-is!j#jDjOj 7k=FkHkl lBFl GlAXl$dlpl=qlmgm m7mAm`nWVnson"oComMoRoYo]oropgpc)pUp\pMhptpWq q,qq/q4qKqRq|qbr;rVtrsssV^DoQ#,R'3BcWU8Xk -QIR~in8/7H Z8[ sux*7z}+8jr09c,v lEMp[s]t<~ Y @bhkEmUkT$t-dP^sF ^ RZya~h) 3; <k' i'E2Y]w=&(\eou -NHIeo%!CE)kT &,Gw NI\{pw@_kqmt 7DlGWI|,+U<v S5]>AEg\!O9iv FGcjk|I?DJ`b+3.?Jty EQ$\aI 5v[{> NI%$,>Fn!1&'CRbQ\]Z.A1b%/3RWO\eCOX gLdB53DI_Iat+, :JAIYM;T:{$+B D@d-7DQWoM}{ $9vXf !=q=oD,K]6Gsg \6\^QN9Zi;#*@WY/egpSN[o{yGIL]|JxQbQ{2Qfnyh|Z|#RszpHNh0H! Oe{ NeeD}13]~< $d_ #<y .b/>hSQh Y HJ3WekCg\ 0pF(|Ep]?12>dl'+47oGsH+%L=a?.TohoPUl VR9FxLQxtx~}#J5_]Y@Ix%}$9T\^2<DY >>T %3Moyt}JKLMNOP^_`a3456/01? $%4;LRSfkc !1@DIMNQXbmyz !-.4:DO[\###$$ $$$$$$$$$*$0$6$7$Y$Z$^$a$d$g$h$i$j$p$v$|$$$%%2788!808788898:8<8>8@8B8D8F8H8J8L8O8P8R8Y8Z8`8f8l8r8x8~8888888888888888888888888889 999999%9+9,92989>9D9J9P9Q9S9Y9_9e9k9q9r9x9~999999999999999999999999999: ::::::%:+:1:7:=:C:D:J:P:Q:S:Y:_:e:k:q:w:}:::::::::::::::::::H;I;P;U;Y;];a;e;i;l;o;r;s;u;z;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<< <%<*<0<6<<<B<C<E<J<O<T<Y<^<d<j<p<v<w<y<~<<<<<<<<<<<<<<<<<<<<<<<<<<<== ======$=)=.=4=:=@=F=G=J=O=T=Y=^=c=i=o=u={=|=>>{HBICIIIUIVIWI[I_IcIgIhIlI{IIIIIIIIIIIIIIIII"^$^'^*^-^8^{^^^^__ !0!0!0!0!0@X+X+X+X+4=>^_P@PFP@P@UnknownGz Times New Roman5Symbol3& z Arial;& Tw Cen MT3Latha3|)HY…p;|i0Batang/ |i0дG5  hMS Mincho-3 fg/5  |i0t96 |i0˳Dotum7Century?5 z Courier New; 4<8ӴtO6  -3 020000MS GothicK5   hMS Gothic-3 0000IE  DFKai-SBMingLiUS&Arial Rounded MT Bold;SimSun[SO96 |i0tGulim5 …pt/5  |i0˳ƴ5& zaTahoma?Angsana NewmZSTWDQ+AGaramondPro-RegularSimSunI Arial Unicode MS;Wingdings!1h\&bFbF P0 P0"!%),.:;?]}  2 3 ! 0 0 0000 =]([\{  0 0 0000;[ld]]k1)S 2qHP?2~Effects of the Pattern of Energy Supply on the Efficiency of Nitrogen Utilization for Microbial Protein Synthesis in the Non-LTaegu KouserT             SWordDocWord.Document.89q