Pregled bibliografske jedinice broj: 28073
A tangent algorithm for computing the generalized singular value decomposition
A tangent algorithm for computing the generalized singular value decomposition // SIAM journal on numerical analysis, 35 (1998), 1804-1832 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 28073 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A tangent algorithm for computing the generalized
singular value decomposition
Autori
Drmač, Zlatko
Izvornik
SIAM journal on numerical analysis (0036-1429) 35
(1998);
1804-1832
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
generalized singular value decomposition; Jacobi method; relative accuracy
Sažetak
We present two new algorithms for floating--point
computation of the generalized singular values of
a real pair $(A,B)$ of full column rank matrices
and for floating--point solution of the
eneralized eigenvalue problem $Hx=lambda Mx$
with symmetric, positive definite matrices $H$
and $M$. The pair $(A,B)$ is replaced with an
equivalent pair $(A',B')$, and the generalized
singular values are computed as the singular
values of the explicitly computed matrix
$F=A' B'^{-1}$. The singular values of $F$ are
computed using the Jacobi method. The relative
accuracy of the computed singular value
pproximations does not depend on column scalings
of $A$ and $B$, that is, the accuracy is nearly
the same for all pairs $(AD_1,BD_2)$, with $D_1$,
$D_2$ arbitrary diagonal, nonsingular matrices.
Similarly, the pencil $H-lambda M$ is replaced
with an equivalent pencil $H'-lambda M'$, and
the eigenvalues of $H-lambda M$ are computed as
the squares of the singular values of
$G=L_H L_M^{-1}$, where $L_H$, $L_M$ are the
Cholesky factors of $H'$, $M'$, respectively,
and the matrix $G$ is explicitly computed as the
solution of a linear system of equations. For the
computed approximation $lambda+deltalambda$ of
any exact eigenvalue $lambda$, the relative
error $|deltalambda|/lambda$ is of order
$p(n)
offmax{min_{Deltain{cal D}}
kappa_2(Delta HDelta),min_{Deltain{cal D}}
kappa_2(Delta MDelta)}$, where $p(n)$ is
modestly growing polynomial of the dimension of
the problem, $
off$ is the roundoff unit of
floating--point arithmetic, ${cal D}$ denotes
the set of diagonal nonsingular matrices and
$kappa_2(cdot)$ is the spectral condition
number. Furthermore, floating--point computation
corresponds to an exact computation with
$H+delta H$, $M+delta M$, where, for all $i$,
$j$, $|delta H_{ij}|/sqrt{H_{ii}H_{jj}}$
and $|delta M_{ij}|/sqrt{M_{ii}M_{jj}}$ are of
order of $
off$ times a modest function of $n$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037012
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Zlatko Drmač
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Mathematical Reviews