Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 278988

Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields


Biljaković, Darko; Kochetov, Mikhail; Kuhlmann, Salma
Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields // Logic in Tehran: proceedings of the Workshop and Conference on Logic, Algebra, and Arithmetic / Enayat, Ali ; Kalantari, Iraj ; Moniri. Mojtaba (ur.).
Wellesley (MA): Association for Symbolic Logic, A K Peters Ltd, , (2006), 42-64 ;, 2006. str. 42-64 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 278988 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields

Autori
Biljaković, Darko ; Kochetov, Mikhail ; Kuhlmann, Salma

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Logic in Tehran: proceedings of the Workshop and Conference on Logic, Algebra, and Arithmetic / Enayat, Ali ; Kalantari, Iraj ; Moniri. Mojtaba - Wellesley (MA) : Association for Symbolic Logic, A K Peters Ltd, , (2006), 42-64 ;, 2006, 42-64

ISBN
978-1-56881-296-0

Skup
Logic in Tehran: the Workshop and Conference on Logic, Algebra, and Arithmetic

Mjesto i datum
Teheran, Iran, 18.10.2003. - 22.10.2003

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Prime; irreducible; truncation; integer part; real closed field; generalized power series; exponential integer part

Sažetak
Berarducci (2000) studied irreducible elements of the ring k((G<0))&#8853; Z, which is an integer part of the power series field k((G)) where G is an ordered divisible abelian group and k is an ordered field. Pitteloud (2001) proved that some of the irreducible elements constructed by Berarducci are actually prime. Both authors mainly con- centrated on the case of archimedean G. In this paper, we study truncation integer parts of any (non-archimedean) real closed field and generalize results of Berarducci and Pitteloud. To this end, we study the canonical integer part Neg (F) &#8853; Z of any truncation closed subfield F of k((G)), where Neg (F) := F &#8745; k((G<0)), and work out in detail how the general case can be reduced to the case of archimedean G. In particular, we prove that k((G<0)) &#8853; Z has (cofinally many) prime elements for any ordered divisible abelian group G. Addressing a question in the paper of Berarducci, we show that every truncation integer part of a non-archimedean expo- nential field has a cofinal set of irreducible elements. Finally, we apply our results to two important classes of exponential fields: exponential algebraic power series and exponential-logarithmic power series.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0120047

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb,
Agronomski fakultet, Zagreb

Profili:

Avatar Url Darko Biljaković (autor)


Citiraj ovu publikaciju:

Biljaković, Darko; Kochetov, Mikhail; Kuhlmann, Salma
Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields // Logic in Tehran: proceedings of the Workshop and Conference on Logic, Algebra, and Arithmetic / Enayat, Ali ; Kalantari, Iraj ; Moniri. Mojtaba (ur.).
Wellesley (MA): Association for Symbolic Logic, A K Peters Ltd, , (2006), 42-64 ;, 2006. str. 42-64 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Biljaković, D., Kochetov, M. & Kuhlmann, S. (2006) Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields. U: Enayat, A., Kalantari, I. & Moniri. Mojtaba (ur.)Logic in Tehran: proceedings of the Workshop and Conference on Logic, Algebra, and Arithmetic.
@article{article, author = {Biljakovi\'{c}, Darko and Kochetov, Mikhail and Kuhlmann, Salma}, year = {2006}, pages = {42-64}, keywords = {Prime, irreducible, truncation, integer part, real closed field, generalized power series, exponential integer part}, isbn = {978-1-56881-296-0}, title = {Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields}, keyword = {Prime, irreducible, truncation, integer part, real closed field, generalized power series, exponential integer part}, publisher = {Association for Symbolic Logic, A K Peters Ltd, , (2006), 42-64 ;}, publisherplace = {Teheran, Iran} }
@article{article, author = {Biljakovi\'{c}, Darko and Kochetov, Mikhail and Kuhlmann, Salma}, year = {2006}, pages = {42-64}, keywords = {Prime, irreducible, truncation, integer part, real closed field, generalized power series, exponential integer part}, isbn = {978-1-56881-296-0}, title = {Primes and Irreducibles in Truncation Integer Parts of Real Closed Fields}, keyword = {Prime, irreducible, truncation, integer part, real closed field, generalized power series, exponential integer part}, publisher = {Association for Symbolic Logic, A K Peters Ltd, , (2006), 42-64 ;}, publisherplace = {Teheran, Iran} }




Contrast
Increase Font
Decrease Font
Dyslexic Font