Pregled bibliografske jedinice broj: 278934
Knot insertion algorithms for Chebyshev splines
Knot insertion algorithms for Chebyshev splines, 2006., doktorska disertacija, Prirodoslovno-matematički fakultet- Matematički odsjek, Zagreb
CROSBI ID: 278934 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Knot insertion algorithms for Chebyshev splines
Autori
Bosner, Tina
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prirodoslovno-matematički fakultet- Matematički odsjek
Mjesto
Zagreb
Datum
08.02
Godina
2006
Stranica
114
Mentor
Rogina, Mladen
Ključne riječi
Spline ; Knot insertion ; Chebyshev systems
Sažetak
In this thesis our point of interest are canonical complete Chebyshev (CCC)– systems and splines associated with them. We are interested in finding numerically stable algorithms for calculating with such splines, and we do that by generalizing the knot insertion based algorithms for polynomial splines to CCC– systems. To be able to construct these algorithms, we introduce knot insertion matrices, and then develop Oslo type algorithms and generalized de Boor algorithm. To show the practical value of these algorithms, we apply them on four kinds of splines: weighted, qsplines, tension and cycloidal splines. Weighted and tension splines are particulary interesting, since weighted are the only splines which can be calculated for the order higher than 4, and tension splines because they have the most wide application. For each of these splines, algorithms are developed with all the details specific for the spline in question. Finally to illustrate the practical computer use of given algorithms, we list program codes involved in calculating with C1 and C2 tension splines.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037114
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb