Pregled bibliografske jedinice broj: 277666
O Atiyah-Sutcliffeovim slutnjama za gotovo kolinearne konfiguracije
O Atiyah-Sutcliffeovim slutnjama za gotovo kolinearne konfiguracije // ICM, Madrid 2006 Abstracts: Posters , Short Communications, Mathematical Software, Other Activities / M. Sanz-Sole et al. (ur.).
Zürich: European Mathematical Society Publishing House, 2006. str. 53-53 (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 277666 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
O Atiyah-Sutcliffeovim slutnjama za gotovo kolinearne konfiguracije
(On Atiyah-Sutcliffe Conjectures for Almost Collinear Configurations)
Autori
Svrtan, Dragutin ; Urbiha, Igor
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
ICM, Madrid 2006 Abstracts: Posters , Short Communications, Mathematical Software, Other Activities
/ M. Sanz-Sole et al. - Zürich : European Mathematical Society Publishing House, 2006, 53-53
Skup
International Congress of Mathematicians 2006
Mjesto i datum
Madrid, Španjolska, 22.08.2006. - 30.08.2006
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
konfiguracije točaka; hipoteze za četiri točke; dihedralna simetrija; hipoteze za simetrične funkcije; Atiyah-Sutcliffeove slutnje; spin-statistike
(configuration of points; four points conjectures; dihedral symmetry; conjectures for symmetric functions; Atiyah-Sutcliffe conjectures; spin-statistics)
Sažetak
Abstract.In 2001 Sir M. F. Atiyah formulated a conjecture (C1) and later with P. Sutcliffe two stronger conjectures (C2) and (C3). These conjectures, inspired by physics (spin-statistics theorem of quantum mechanics), are geometrically defined for any configuration of points in the Euclidean three space. The conjecture (C1) is proved for $n = 3, 4$ and for general $n$ only for some special configurations (M. F. Atiyah, M. Eastwood and P. Norbury, D.Djokovi\'c). In this talk we shall explain some new conjectures for symmetric functions which imply (C2) and (C3) for almost collinear configurations. Computations up to $n = 9$ are performed with a help of Maple and J. Stembridge's package SF for symmetric functions. For $n = 4$ the conjectures (C2) and (C3) we have also verified for some infinite families of tetrahedra.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
POVEZANOST RADA
Projekti:
0037117
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb