Pregled bibliografske jedinice broj: 277169
REGULAR HEPTAGON'S MIDPOINTS CIRCLE
REGULAR HEPTAGON'S MIDPOINTS CIRCLE // Sarajevo Journal of Mathematics, 2 (14) (2006), 119-131 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 277169 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
REGULAR HEPTAGON'S MIDPOINTS CIRCLE
Autori
Čerin, Zvonko
Izvornik
Sarajevo Journal of Mathematics (1840-0655) 2 (14)
(2006);
119-131
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
regular heptagon; midpoint; circle
Sažetak
This paper explores the geometry of the regular heptagon ABCDEFG. We start from a classical result by Thebault and Demir that six midpoints of sides and diagonals lie on a cirlce m with diameter equal to the side of the square inscribed in the circumcircle of ABCDEFG. Then we discover eight more midpoints of segments on m and show that they are vertices of two regular heptagons inscribed in the circle m. Extending further this idea we show that midpoints of many other segments also lie on the circle m so that it deserves the name - the midpoints circle of ABCDEFG. In the proofs we use the complex numbers and perform our calculations with the help of computers in Maple V.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037112
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Zvonko Čerin
(autor)
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews