Pregled bibliografske jedinice broj: 273526
Relative eigenvalue/eigenvector estimates for multi-scale problems in science and engineering
Relative eigenvalue/eigenvector estimates for multi-scale problems in science and engineering // 13th ILAS conference
Amsterdam, Nizozemska, 2006. str. 1-1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 273526 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relative eigenvalue/eigenvector estimates for multi-scale problems in science and engineering
Autori
Grubišić, Luka ; Drmač, Zlatko ; Kostrykin, Vadim ; Veselić, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
13th ILAS conference
Mjesto i datum
Amsterdam, Nizozemska, 18.07.2006. - 21.07.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
relative perturbation thory ; multi-scale problems
Sažetak
We consider the eigenvalue/eigenvector approximation problem for matrices which originate as discretizations of the problems of the Large Coupling Limit, Our aim is to obtain estimates which correctly adapt to the singularities which a discretisation inherits. On the model problems we consider, known sin(Theta) theories (Davis– Kahan, Ipsen, Li, Mathias– Veselic...) give only a partial answer since they sometimes fail to resolve the singularity which the coupling introduces into the eigenvalue problem. We reconsider the approximation problem in the geometry of the ``energy'' norm. The obtained estimates are an energy norm variant of the Mathias– Veselic eigenvector inequalities. A new class of cluster robust quadratic estimates for eigenvalues will also be presented. They improve the quadratic relative-residual estimates of Drmac and Hari. We also show that on our model problems new eigenvalue inequalities outperform estimates which are functions of the absolute residuum and the absolute gap. At the end, as an alternative to a sin (Theta)-approach for obtaining invariant subspace estimates we present a relative version of the tan 2(Theta) theory. These results have been obtained through a study of the weakly formulated Riccati equation and are considerably sharper than the previously known ``relative'' sin(Theta) inequalities. Numerical experiments which corroborate the theory will be presented.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037122
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb