Pregled bibliografske jedinice broj: 269216
Simulation of grain size behavior in microstructure of AA5251 aluminum ingots by neural networks
Simulation of grain size behavior in microstructure of AA5251 aluminum ingots by neural networks // 7th International Foundrymen Conference
Opatija, 2006. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 269216 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Simulation of grain size behavior in microstructure of AA5251 aluminum ingots by neural networks
Autori
Lela, Branimir ; Duplančić, Igor ; Prgin, Jere ; Markotić, Ante
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
7th International Foundrymen Conference
Mjesto i datum
Opatija, Hrvatska, 12.06.2006. - 14.06.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Computer simulation; Grain size; AA5251 aluminum alloy ingots; DC casting; Neural networks
Sažetak
Computer simulation for prediction of the grain size in aluminum ingots using artificial neural networks is presented in this work. A feed forward neural network model with back-propagation learning algorithm and regularization has been developed to predict the grain size in the microstructure of AA5251 aluminum ingots. Both casting speed and temperature, meniscus level, master alloy AlTi5B1 addition in the form of ingots, speed of master alloy AlTi5B1 addition in a form of wire and cooling water flow are taken as casting process parameters. The artificial neural network was trained on data measured during the vertical DC (direct-chill) casting process, to be able to describe complex dependencies between the microstructure and casting parameters. The results of simulations show satisfactory agreement with the practical experience.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
0023012
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split