Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 267477

Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes


Poganj, Tibor
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes // Applied Mathematics and Computation, 187 (2007), 1; 384-394 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 267477 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes

Autori
Poganj, Tibor

Izvornik
Applied Mathematics and Computation (0096-3003) 187 (2007), 1; 384-394

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
almost sure ${;;; \mathsf P};;; $ convergence; $\alpha$--mean convergence; $\alpha$--mean derivatives; Catalan constant; circular truncation error; derivative sampling; Karhunen--processes; $L^\alpha(\Omega; {;;; \mathfrak F};;;; {;;; \mathsf P};;; )$--processes

Sažetak
Mean square and almost sure Whittaker--type derivative sampling theorems are obtained for the class $L^\alpha( \Omega , {;\mathfrak F};, {;\mathsf P};) \ 0 \leq \alpha \le 2$ of stochastic processes having spectral representation, with the aid of the {; Weierstra\ss};$\sigma$ function. Functions of this class are represented by interpolatory series. The results are valid for harmonizable and stationary processes ($\alpha =2$) as well. The formul{; \ae}; are interpreted in the $\alpha$--mean sense and also in the almost sure ${;\mathsf P};$ sense when the initial signal function and its derivatives (up to some fixed order) are sampled at the points of the integer lattice ${; \mathbb Z}; ^2$. The circular truncation error is introduced and used in the truncation error analysis. Finally, sampling sum convergence rate is provided.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije

Ustanove:
Pomorski fakultet, Rijeka

Profili:

Avatar Url Tibor Poganj (autor)

Citiraj ovu publikaciju:

Poganj, Tibor
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes // Applied Mathematics and Computation, 187 (2007), 1; 384-394 (međunarodna recenzija, članak, znanstveni)
Poganj, T. (2007) Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes. Applied Mathematics and Computation, 187 (1), 384-394.
@article{article, author = {Poganj, Tibor}, year = {2007}, pages = {384-394}, keywords = {almost sure ${, , , \mathsf P}, , , $ convergence, $\alpha$--mean convergence, $\alpha$--mean derivatives, Catalan constant, circular truncation error, derivative sampling, Karhunen--processes, $L\^{}\alpha(\Omega, {, , , \mathfrak F}, , , , {, , , \mathsf P}, , , )$--processes}, journal = {Applied Mathematics and Computation}, volume = {187}, number = {1}, issn = {0096-3003}, title = {Whittaker - type derivattive sampling reconstruction of stochastic $L\^{}\alpha(\Omega)$ - processes}, keyword = {almost sure ${, , , \mathsf P}, , , $ convergence, $\alpha$--mean convergence, $\alpha$--mean derivatives, Catalan constant, circular truncation error, derivative sampling, Karhunen--processes, $L\^{}\alpha(\Omega, {, , , \mathfrak F}, , , , {, , , \mathsf P}, , , )$--processes} }
@article{article, author = {Poganj, Tibor}, year = {2007}, pages = {384-394}, keywords = {almost sure ${, , , \mathsf P}, , , $ convergence, $\alpha$--mean convergence, $\alpha$--mean derivatives, Catalan constant, circular truncation error, derivative sampling, Karhunen--processes, $L\^{}\alpha(\Omega, {, , , \mathfrak F}, , , , {, , , \mathsf P}, , , )$--processes}, journal = {Applied Mathematics and Computation}, volume = {187}, number = {1}, issn = {0096-3003}, title = {Whittaker - type derivattive sampling reconstruction of stochastic $L\^{}\alpha(\Omega)$ - processes}, keyword = {almost sure ${, , , \mathsf P}, , , $ convergence, $\alpha$--mean convergence, $\alpha$--mean derivatives, Catalan constant, circular truncation error, derivative sampling, Karhunen--processes, $L\^{}\alpha(\Omega, {, , , \mathfrak F}, , , , {, , , \mathsf P}, , , )$--processes} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews
  • Zentralblatt fur Mathematik
  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font