Pregled bibliografske jedinice broj: 267477
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes // Applied Mathematics and Computation, 187 (2007), 1; 384-394 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 267477 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Whittaker - type derivattive sampling reconstruction of stochastic $L^\alpha(\Omega)$ - processes
Autori
Poganj, Tibor
Izvornik
Applied Mathematics and Computation (0096-3003) 187
(2007), 1;
384-394
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
almost sure ${;;; \mathsf P};;; $ convergence; $\alpha$--mean convergence; $\alpha$--mean derivatives; Catalan constant; circular truncation error; derivative sampling; Karhunen--processes; $L^\alpha(\Omega; {;;; \mathfrak F};;;; {;;; \mathsf P};;; )$--processes
Sažetak
Mean square and almost sure Whittaker--type derivative sampling theorems are obtained for the class $L^\alpha( \Omega , {;\mathfrak F};, {;\mathsf P};) \ 0 \leq \alpha \le 2$ of stochastic processes having spectral representation, with the aid of the {; Weierstra\ss};$\sigma$ function. Functions of this class are represented by interpolatory series. The results are valid for harmonizable and stationary processes ($\alpha =2$) as well. The formul{; \ae}; are interpreted in the $\alpha$--mean sense and also in the almost sure ${;\mathsf P};$ sense when the initial signal function and its derivatives (up to some fixed order) are sampled at the points of the integer lattice ${; \mathbb Z}; ^2$. The circular truncation error is introduced and used in the truncation error analysis. Finally, sampling sum convergence rate is provided.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathematik
- MathSciNet