Pregled bibliografske jedinice broj: 26465
Predicting the hardenability of steels using neural network
Predicting the hardenability of steels using neural network // Proceedings of the 7th International Scietific Conference Achivements in Mechanical & Materials Engineering / Dobrzanski, Leszek A. (ur.).
Gliwice : Zakopane: Polish Academy of Sciences, 1998. str. 151-154 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 26465 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting the hardenability of steels using neural
network
Autori
Filetin, Tomislav ; Majetić, Dubravko ; Žmak, Irena
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 7th International Scietific Conference Achivements in Mechanical & Materials Engineering
/ Dobrzanski, Leszek A. - Gliwice : Zakopane : Polish Academy of Sciences, 1998, 151-154
Skup
7 th International Scietific Conference Achivements in Mechanical & Materials Engineering
Mjesto i datum
Zakopane, Poljska ; Gliwice, Poljska, 29.11.1998. - 02.12.1998
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
hardenability of steels ; neural networks ; prediction
Sažetak
An attempt has been made to establish a non-linear statis discrete-time neuron model, teh so-called Static Elementary Preocessor (SEP). Based on the SEP neurons, a Static Multi layer Perceptron Neural Network is proposed to predict a Jominy hardness curve from chemical composition. To accelerate tge convergence of proposed static error-back propagation learning algorithm, the momentum method is applied. The learning results are presented in terms that are insensitive to the learning data range and allow easy comparison with other learning algorithms, independent of machine architecture or simulator implementation. In the learning process datasets with 121 heats are used - comprising samples from 40 steel grades with different chemical composition. The mean error between measured and predicted hardness data and standard deviation for testing dadtaset (60 heats - samples from 203 heats in question) is comparable with other published methods of prediction.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb