Pregled bibliografske jedinice broj: 26451
Neural Network Applications in Stock Market Predictions
Neural Network Applications in Stock Market Predictions // Proceedings of the 9th International Conference on Information and Intelligent Systems '98 / Aurer, Boris ; Logožar, Robert (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 1998. str. 255-263 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 26451 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Neural Network Applications in Stock Market Predictions
Autori
Zekić, Marijana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 9th International Conference on Information and Intelligent Systems '98
/ Aurer, Boris ; Logožar, Robert - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 1998, 255-263
Skup
9th International Conference "Information and Intelligent Systems '98"
Mjesto i datum
Varaždin, Hrvatska, 23.09.1998. - 25.09.1998
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
neural network applications; stock market; qualitative comparative analysis; NN methodology; benefits; limitations
Sažetak
Neural networks (NNs), as artificial intelligence (AI) methods, have become very important in making stock market predictions. Much research on the applications of NNs for solving business problems have proven their advantages over statistical and other methods that do not include AI, although there is no optimal methodology for a certain problem. In order to identify the main benefits and limitations of previous methods in NN applications and to find connections between methodology and problem domains, data models, and results obtained, a comparative analysis of selected applications is conducted. It can be concluded from analysis that NNs are most implemented in forecasting stock prices, returns, and stock modeling, and the most frequent methodology is the Backpropagation algorithm. However, the importance of NN integration with other artificial intelligence methods is emphasized by numerous authors. Inspite of many benefits, there are limitations that should be investigated, such as the relevance of the results, and the "best" topology for the certain problems.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Ekonomski fakultet, Osijek,
Fakultet organizacije i informatike, Varaždin
Profili:
Marijana Zekić-Sušac
(autor)