Pregled bibliografske jedinice broj: 264130
News Article Recommendation Using Artificial Immune System
News Article Recommendation Using Artificial Immune System // Proceedings of the 29th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2006, vol. III / Budin, Leo ; Ribarić, Slobodan (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2006. str. 196-201 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 264130 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
News Article Recommendation Using Artificial Immune System
Autori
Mihaljević, Branko ; Orlić, Marin ; Mlinarić, Hrvoje
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 29th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2006, vol. III
/ Budin, Leo ; Ribarić, Slobodan - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2006, 196-201
Skup
29th International Convention for Information and Communication Technology, Electronics and Microelectronics - MIPRO 2006 - CTS & CIS
Mjesto i datum
Opatija, Hrvatska, 22.05.2006. - 26.05.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Artificial Immune System; Danger Theory; Recommender System
Sažetak
Artificial immune system is a suitable paradigm for solving recommendation problem. Danger theory is a novel context dependant response theory explaining how immune system responds to pathogens through immunological cells reactions. This paper addresses construction of a news article recommender system model based on artificial immune system combined with Danger theory. Proposed system architecture is applicable to web portal content recommendation problem with respect to implicit user activity tracking, honoring evolving user interests. System model is adapted to news article recommendation, enabling passive delivery of personalized recommendation list presenting articles with interesting topics.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo