Pregled bibliografske jedinice broj: 262658
On the structure of theta lifts of discrete series for dual pairs (Sp(n), O(V))
On the structure of theta lifts of discrete series for dual pairs (Sp(n), O(V)) // Israel Journal of Mathematics, 164 (2008), 1; 87-124 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 262658 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the structure of theta lifts of discrete series for dual pairs (Sp(n), O(V))
Autori
Muić, Goran
Izvornik
Israel Journal of Mathematics (0021-2172) 164
(2008), 1;
87-124
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
non-archimedean fields; symplectic groups; orhogonal groups; discrete series; theta lifts
Sažetak
The purpose of the present paper is to prove some fundamental results on the structure of theta lifts of discrete series. The author shows that the lifts of discrete series behave very much like the lifts of supercuspidal representations. Some of that is already well-known by the previous work of the author, and it is just a corollary of more general and more precise results obtained in this paper. The proof in earlier paper rely on the classification of discrete series for classical groups due to Moeglin and Tadic. The classification of Moeglin and Tadic, is based on an assumption that is not verified yet to its full extent. Therefore, the author does not use their classification, but some very simple properties of discrete series that are verified in the present paper.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372794-2804 - Unitarne reprezentacije klasicnih grupa i automorfne forme (Tadić, Marko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Goran Muić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrablatt fur Mathematik, Mathematical Abstracts