Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 259267

A neural network classification of credit applicants in consumer credit scoring


Šarlija, Nataša; Benšić, Mirta, Zekić-Sušac, Marijana
A neural network classification of credit applicants in consumer credit scoring // Proceedings of the 24th IASTED International Multi-Conference « ; Artificial intelligence and applications» ; / Devedzic, Vladan (ur.).
Innsbruck: ACTA Press, 2006. str. 205-210 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 259267 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A neural network classification of credit applicants in consumer credit scoring

Autori
Šarlija, Nataša ; Benšić, Mirta, Zekić-Sušac, Marijana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 24th IASTED International Multi-Conference &laquo ; Artificial intelligence and applications&raquo ; / Devedzic, Vladan - Innsbruck : ACTA Press, 2006, 205-210

Skup
24th IASTED International Multi-Conference &laquo ; Artificial intelligence and applications&raquo ;

Mjesto i datum
Innsbruck, Austrija, 13.02.2006. - 16.02.2006

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
credit scoring modeling; logistic regression; neural networks; radial basis function network

Sažetak
The paper aims to find an efficient model for consumer credit scoring using neural networks in comparison with logistic regression. A specific characteristic of the examined dataset was that the credit repayment period was not completed, assuming the existence of "good", "bad", and indeterminate ("poor") applicants which influenced the model accuracy. Five different modeling strategies were tested: (1) multinomial model with three categories of applicants, (2) binomial model using only good and bad applicants, (3) binomial model including poor applicants as good, (4) binomial model including poor applicants as bad, and (5) binomial model in which poor credit applicants were estimated by model 2 and then included in the dataset. The radial basis function network with softmax activation function produced best results among the three neural network algorithms tested. The results suggest that the best strategy to deal with poor applicants is to estimate them as good and bad, and then include into the model or to exclude them from the data set, although some further investigation is to be followed.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Ekonomija, Informacijske i komunikacijske znanosti

Napomena
Zbornik s konferencije je citiran u bazama: INSPEC, ISI Thomson, Elsevier (Engineering Information), Cambridge Scientific Abstracts, and Emerald



POVEZANOST RADA


Projekti:
0235002

Ustanove:
Ekonomski fakultet, Osijek,
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Mirta Benšić (autor)

Avatar Url Nataša Šarlija (autor)


Citiraj ovu publikaciju:

Šarlija, Nataša; Benšić, Mirta, Zekić-Sušac, Marijana
A neural network classification of credit applicants in consumer credit scoring // Proceedings of the 24th IASTED International Multi-Conference « ; Artificial intelligence and applications» ; / Devedzic, Vladan (ur.).
Innsbruck: ACTA Press, 2006. str. 205-210 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šarlija, N. & Benšić, Mirta, Zekić-Sušac, Marijana (2006) A neural network classification of credit applicants in consumer credit scoring. U: Devedzic, V. (ur.)Proceedings of the 24th IASTED International Multi-Conference « ; Artificial intelligence and applications» ;.
@article{article, author = {\v{S}arlija, Nata\v{s}a}, editor = {Devedzic, V.}, year = {2006}, pages = {205-210}, keywords = {credit scoring modeling, logistic regression, neural networks, radial basis function network}, title = {A neural network classification of credit applicants in consumer credit scoring}, keyword = {credit scoring modeling, logistic regression, neural networks, radial basis function network}, publisher = {ACTA Press}, publisherplace = {Innsbruck, Austrija} }
@article{article, author = {\v{S}arlija, Nata\v{s}a}, editor = {Devedzic, V.}, year = {2006}, pages = {205-210}, keywords = {credit scoring modeling, logistic regression, neural networks, radial basis function network}, title = {A neural network classification of credit applicants in consumer credit scoring}, keyword = {credit scoring modeling, logistic regression, neural networks, radial basis function network}, publisher = {ACTA Press}, publisherplace = {Innsbruck, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font