Pregled bibliografske jedinice broj: 258996
A precise upper bound for the error of interpolation of stochastic processes
A precise upper bound for the error of interpolation of stochastic processes // Theory of probability and mathematical statistics, 71 (2005), 151-163 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 258996 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A precise upper bound for the error of interpolation of stochastic processes
Autori
Olenko, Andriy ; Poganj, Tibor
Izvornik
Theory of probability and mathematical statistics (0094-9000) 71
(2005);
151-163
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Sampling theorems ; Kotel'nikov sums ; truncation error ; almost sure reconstruction ; mean-square reconstruction ; sharp upper bound
Sažetak
We obtain a precise upper bound for the truncation error of interpolation of functions of the Paley-Wiener class with the help of finite Whittaker-Kotelnikov-Shannon sums. We construct an example of an extremal function for which the upper bound is achieved. We study the error of interpolation and the rate of the mean square convergence for stochastic processes of the weak Cramér class. The paper contains an extensive list of references concerning the upper bounds for errors of interpolation for both deterministic and stochastic cases. The final part of the paper contains a discussion of new directions in this field.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt fur Mathematik
- Referativnii Zhurnal