Pregled bibliografske jedinice broj: 258431
The equality $S1=D=R$
The equality $S1=D=R$ // MLQ. Mathematical Logic Quarterly, 49 (2003), 2; 115-128 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 258431 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The equality $S1=D=R$
Autori
Grossberg, Rami ; Kolesnikov, Alexei ; Tomašić, Ivan ; Van Dieren, Monica
Izvornik
MLQ. Mathematical Logic Quarterly (0942-5616) 49
(2003), 2;
115-128
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
stable theory; stable formula; rank; degree
Sažetak
The new result of this paper is that for \theta(x ; a)-stable (a weakening of T is stable) we have S1[\theta(x ; a)] = D[\theta(x ; a), L, \infty]. S1 is Hrushovski's rank. This is an improvement of a result of Kim and Pillay, who for simple theories under the (strong) assumption that either of the ranks be finite obtained the same identity. Only the first equality is new, the second equality is a result of Shelah from the seventies. We derive it by studying localizations of several rank functions, we get the following Main Theorem. Suppose that \mu is regular satisfying \mu\geq|T|^+, p is a finite type, and \Delta is a set of formulas closed under Boolean operations. If either (a) R[p, \Delta , \mu^+] < \infty or (b) p is \Delta-stable and \mu satisfies "for every sequence {;\mu_i : i < |\Delta| + \aleph_0}; of cardinals \mu_i < \mu we have that \Prod_{;i<|\Delta|+\aleph_0};\mu_i<\mu holds, then S[p, \Delta, \mu^+] = D[p, \Delta, \mu^+] = R[p, \Delta , \mu^+]. The S rank above is a localized version of Hrushovski's S1 rank. This rank, as well as our systematic use of local stability, allows us to get a more conceptual proof of the equality of D and R, which is an old result of Shelah. A particular (asymptotic) case of the theorem offers a new sufficient condition for the equality of S1 and D[ˇ, L, \infty]. We also manage, due to a more general approach, to avoid some combinatorial difficulties present in Shelah's original exposition.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Ivan Tomašić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews