Pregled bibliografske jedinice broj: 256784
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra // Journal of algebra, 309 (2007), 1; 318-359 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 256784 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra
Autori
Durov, Nikolai ; Samsarov, Andjelo ; Meljanac, Stjepan ; Škoda, Zoran
Izvornik
Journal of algebra (0021-8693) 309
(2007), 1;
318-359
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
deformations of algebras; Lie algebras; Weyl algebra; Bernoulli numbers; representations; formal schemes
Sažetak
Given a $n$-dimensional Lie algebra $g$ over a field $k \supset \mathbb Q$, together with its vector space basis $X^0_1, ..., X^0_n$, we give a formula, depending only on the structure constants, representing the infinitesimal generators, $X_i = X^0_i t$ in $g\otimes_k k [[t]]$, where $t$ is a formal variable, as a formal power series in $t$ with coefficients in the Weyl algebra $A_n$. Actually, the theorem is proved for Lie algebras over arbitrary rings $k\supset Q$. We provide three different proofs, each of which is expected to be useful for generalizations. The first proof is obtained by direct calculations with tensors. This involves a number of interesting combinatorial formulas in structure constants. The final step in calculation is a new formula involving Bernoulli numbers and arbitrary derivatives of coth(x/2). The dimensions of certain spaces of tensors are also calculated. The second method of proof is geometric and reduces to a calculation of formal right-invariant vector fields in specific coordinates, in a (new) variant of formal group scheme theory. The third proof uses coderivations and Hopf algebras.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372794-2807 - Homološke i geometrijske metode u teoriji reprezentacija (Pandžić, Pavle, MZOS ) ( CroRIS)
098-0000000-2865 - Kvantna teorija polja, nekomutativni prostori i simetrije (Meljanac, Stjepan, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Institut "Ruđer Bošković", Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada front.math.ucdavis.edu www.sciencedirect.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews