Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 256784

A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra


Durov, Nikolai; Samsarov, Andjelo; Meljanac, Stjepan; Škoda, Zoran
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra // Journal of algebra, 309 (2007), 1; 318-359 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 256784 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra

Autori
Durov, Nikolai ; Samsarov, Andjelo ; Meljanac, Stjepan ; Škoda, Zoran

Izvornik
Journal of algebra (0021-8693) 309 (2007), 1; 318-359

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
deformations of algebras; Lie algebras; Weyl algebra; Bernoulli numbers; representations; formal schemes

Sažetak
Given a $n$-dimensional Lie algebra $g$ over a field $k \supset \mathbb Q$, together with its vector space basis $X^0_1, ..., X^0_n$, we give a formula, depending only on the structure constants, representing the infinitesimal generators, $X_i = X^0_i t$ in $g\otimes_k k [[t]]$, where $t$ is a formal variable, as a formal power series in $t$ with coefficients in the Weyl algebra $A_n$. Actually, the theorem is proved for Lie algebras over arbitrary rings $k\supset Q$. We provide three different proofs, each of which is expected to be useful for generalizations. The first proof is obtained by direct calculations with tensors. This involves a number of interesting combinatorial formulas in structure constants. The final step in calculation is a new formula involving Bernoulli numbers and arbitrary derivatives of coth(x/2). The dimensions of certain spaces of tensors are also calculated. The second method of proof is geometric and reduces to a calculation of formal right-invariant vector fields in specific coordinates, in a (new) variant of formal group scheme theory. The third proof uses coderivations and Hopf algebras.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372794-2807 - Homološke i geometrijske metode u teoriji reprezentacija (Pandžić, Pavle, MZOS ) ( CroRIS)
098-0000000-2865 - Kvantna teorija polja, nekomutativni prostori i simetrije (Meljanac, Stjepan, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Zoran Škoda (autor)

Avatar Url Anđelo Samsarov (autor)

Avatar Url Stjepan Meljanac (autor)

Citiraj ovu publikaciju:

Durov, Nikolai; Samsarov, Andjelo; Meljanac, Stjepan; Škoda, Zoran
A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra // Journal of algebra, 309 (2007), 1; 318-359 (međunarodna recenzija, članak, znanstveni)
Durov, N., Samsarov, A., Meljanac, S. & Škoda, Z. (2007) A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra. Journal of algebra, 309 (1), 318-359.
@article{article, author = {Durov, Nikolai and Samsarov, Andjelo and Meljanac, Stjepan and \v{S}koda, Zoran}, year = {2007}, pages = {318-359}, keywords = {deformations of algebras, Lie algebras, Weyl algebra, Bernoulli numbers, representations, formal schemes}, journal = {Journal of algebra}, volume = {309}, number = {1}, issn = {0021-8693}, title = {A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra}, keyword = {deformations of algebras, Lie algebras, Weyl algebra, Bernoulli numbers, representations, formal schemes} }
@article{article, author = {Durov, Nikolai and Samsarov, Andjelo and Meljanac, Stjepan and \v{S}koda, Zoran}, year = {2007}, pages = {318-359}, keywords = {deformations of algebras, Lie algebras, Weyl algebra, Bernoulli numbers, representations, formal schemes}, journal = {Journal of algebra}, volume = {309}, number = {1}, issn = {0021-8693}, title = {A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra}, keyword = {deformations of algebras, Lie algebras, Weyl algebra, Bernoulli numbers, representations, formal schemes} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font