Pregled bibliografske jedinice broj: 253265
Symmetric (36, 15, 6) design having U(3, 3) as an automorphism group and strongly regular graphs
Symmetric (36, 15, 6) design having U(3, 3) as an automorphism group and strongly regular graphs // Summer 2001 Workshop on Graphs and Combinatorial Designs
Honolulu (HI), 2001. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 253265 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Symmetric (36, 15, 6) design having U(3, 3) as an automorphism group and strongly regular graphs
Autori
Crnković, Dean
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Summer 2001 Workshop on Graphs and Combinatorial Designs
/ - Honolulu (HI), 2001
Skup
Summer 2001 Workshop on Graphs and Combinatorial Designs
Mjesto i datum
Honolulu (HI), Sjedinjene Američke Države, 13.07.2006. - 27.07.2006
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
symmetric design; strongly regular graph; unitary group
Sažetak
Up to isomorphism there exists unique symmetric (36, 15, 6) design having U(3, 3) as an automorphism group. Let as denote this design by ${;\cal D};_1$. U(3, 3) acts transitively on ${;\cal D};_1$. This design correspond to a Hadamard $36 \times 36$-matrix H. Using the matrix H one can construct Hadamard design with parameters (35, 17, 8) admitting transitive action of $S_8$. Denote this design by ${;\cal D};_2$. Designs ${;\cal D};_1$ and ${;\cal D};_2$ admit a null polarity. Therefore, incidence matrices of designs ${;\cal D};_1$ and ${;\cal D};_2$ are adjacency matrices of strongly regular graphs with parameters (36, 14, 4, 6) and (35, 16, 6, 8), respectively.
Izvorni jezik
Engleski
Znanstvena područja
Matematika