Pregled bibliografske jedinice broj: 252005
Maximally singular functions in Besov spaces
Maximally singular functions in Besov spaces // Problemi attuali dell'analisi e della fisica matematica, 3rd International Symposium dedicated to the Memory of Gaetano Fichera
Taormina, Italija, 2006. (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 252005 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Maximally singular functions in Besov spaces
Autori
Žubrinić, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Problemi attuali dell'analisi e della fisica matematica, 3rd International Symposium dedicated to the Memory of Gaetano Fichera
Mjesto i datum
Taormina, Italija, 29.06.2006. - 01.07.2006
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Besov space; maximally singular function; fractal set
Sažetak
Assuming that $0<\alpha p<N$, $p, q\in(1, \infty)$, we construct a class of functions in the Besov space $B^{;p, q};_{;\alpha};(R^N)$ such that the Hausdorff dimension of their singular set is equal to $N-\alpha p$. We show that these functions are maximally singular, that is, the Hausdorff dimension of singular set of any other Besov function in $B^{;p, q};_{;\alpha};(R^N)$ is $\le N-\alpha p$. Similar results are obtained for Lizorkin-Triebel spaces $F^{;p, q};_{;\alpha};(R^N)$ and for the Hardy space $H^1(R^N)$. Some open problems will be listed related to the program of finding singular dimension of various function spaces, and of solutions of PDE-s. The above results will be published in Archiv der athematik, and they are a continuation of author's previous work on finding maximally singular functions in Bessel potential spaces, including Sobolev spaces.
Izvorni jezik
Engleski
Znanstvena područja
Matematika