Pregled bibliografske jedinice broj: 24784
A Bound for the Condition of a Hyperbolic Eigenvector Matrix
A Bound for the Condition of a Hyperbolic Eigenvector Matrix // Linear Algebra and its Applications, 290 (1999), 1-3; 247-255 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 24784 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Bound for the Condition of a Hyperbolic Eigenvector Matrix
Autori
Slapničar, Ivan ; Veselić, Krešimir
Izvornik
Linear Algebra and its Applications (0024-3795) 290
(1999), 1-3;
247-255
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
spectral condition; hyperbolic eigenvector matrix
Sažetak
The hyperbolic eigenvector matrix is a matrix $X$ which simultaneously diagonalizes the pair $(H, J)$, where $H$ is Hermitian positive definite and $J=diag (pm 1)$ such that $X^*HX=Delta$ and $X^*JX=J$. We prove that the spectral condition of $X$, $kappa(X)$, is bounded by $kappa(X)leq sqrt{;min kappa (D^*H D)};$, where the minimum is taken over all non-singular matrices $D$ which commute with $J$. This bound is attainable and it can be simply computed. Similar results hold for other signature matrices $J$, like in the discretized Klein-Gordon equation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037012
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus