Pregled bibliografske jedinice broj: 244984
Non-Negative Matrix Factorization Approach to Blind Image Deconvolution
Non-Negative Matrix Factorization Approach to Blind Image Deconvolution // Lecture notes in computer science, 3889 (2006), 966-973 doi:10.1007/11679363_120 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 244984 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-Negative Matrix Factorization Approach to Blind Image Deconvolution
Autori
Kopriva, Ivica ; Nuzillard, Danielle
Izvornik
Lecture notes in computer science (0302-9743) 3889
(2006);
966-973
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Blind deconvolution ; Nonegative matrix factorization ; Independent component analysis
(Non-Negative Matrix Factorization Approach to Blind Image Deconvolution)
Sažetak
Novel approach to single frame multichannel blind image deconvolution is formulated recently as non-negative matrix factorization (NMF) problem with sparseness constraints imposed on the unknown mixing vector. Unlike most of the blind image deconvolution algorithms, the NMF approach requires no a priori knowledge about the blurring kernel and original image. Experimental performance evaluation of the NMF algorithm is presented with the image degraded by the out-of-focus blur. NMF algorithm is compared with the state-of-the-art single frame blind image deconvolution algorithm: blind Richardson-Lucy algorithm and single frame multichannel independent component analysis based algorithm. It has been demonstrated that NMF approach outperforms mentioned blind image deconvolution methods.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus