Pregled bibliografske jedinice broj: 244555
Blind Inversion in nonlinear space-variant imaging by using Cauchy machine
Blind Inversion in nonlinear space-variant imaging by using Cauchy machine // Proc. SPIE 5102 - Independent Component Analysis, Wavelets and Neural Networks
Bellingham (WA): International Society for Optical Engineering, 2003. str. 5-16 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 244555 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Blind Inversion in nonlinear space-variant imaging by using Cauchy machine
Autori
Kopriva, Ivica ; Szu, Harold
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. SPIE 5102 - Independent Component Analysis, Wavelets and Neural Networks
/ - Bellingham (WA) : International Society for Optical Engineering, 2003, 5-16
Skup
SPIE Defense and Security Simposium
Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 22.04.2003. - 25.04.2003
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Cauchy machine; Helmholtz free energy; space-variant imaging; blind inversion; sensor nonlinearities.
Sažetak
A Cauchy Machine has been applied to solve nonlinear space-variant blind imaging problem with positivity constraints on the pixel-by-pixel basis. Nonlinearity parameters, de-mixing matrix and source vector are found at the minimum of the thermodynamics free energy H=U-T0S, where U is estimation error energy, T0 is temperature and S is the entropy. Free energy represents dynamic balance of an open information system with constraints defined by data vector. Solution was found through Lagrange Constraint Neural Network algorithm for computing the unknown source vector, exhaustive search to find unknown nonlinearity parameters and Cauchy Machine for seeking de-mixing matrix at the global minimum of H for each pixel. We demonstrate the algorithm capability to recover images from the synthetic noise free nonlinear mixture of two images. Capability of the Cauchy Machine to find the global minimum of the ‘ golf hole’ type of landscape has hitherto never been demonstrated in higher dimensions with a much less computation complexity than an exhaustive search algorithm.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivica Kopriva
(autor)