Pregled bibliografske jedinice broj: 244547
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion // Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2003. str. 1133-1136 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 244547 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion
Autori
Szu, Harold ; Kopriva, Ivica ; Hoekstra, Phil ; Diakides, Nicholas ; Diakides, Mary ; Buss, James ; Lupo, Jasper ;
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2003, 1133-1136
Skup
IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society
Mjesto i datum
Cancún, Meksiko, 17.09.2003. - 21.09.2003
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Unsupervised classification; Multispectral imaging; Neural networks; Early tumor detection;
Sažetak
The unsupervised classification algorithm called Lagrange Constraint Neural Network (LCNN) has been successfully applied to the sub-pixel multi-spectral remote sensing, [25]. Here, we apply the LCNN to the early breast cancer detection using two-color mid and long infrared images of the breast. This could be a new paradigm shift that enabled smart neural network algorithm to sort out the underlying malignant heat sources for physician diagnoses. The non-intrusive 2-color passive infrared imaging that could be repeated for record track with no radiation hazard seems to be alternative paradigm shift for the first-line screening against breast cancer. The sub-pixel super-resolution capability of the remote sensing is equivalent to the submilimeter scaling of the close-up breast imaging for the vascular and the angiogenesis effects. We demonstrate the potential benefit of the multi-color mid & long infrared imaging capable for detecting the abnormal under-skin thermal textures as well as stage-zero detection of the ductal carcinoma in situ.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivica Kopriva
(autor)