Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 244547

Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion


Szu, Harold; Kopriva, Ivica; Hoekstra, Phil; Diakides, Nicholas; Diakides, Mary; Buss, James; Lupo, Jasper;
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion // Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2003. str. 1133-1136 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 244547 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion

Autori
Szu, Harold ; Kopriva, Ivica ; Hoekstra, Phil ; Diakides, Nicholas ; Diakides, Mary ; Buss, James ; Lupo, Jasper ;

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society / - : Institute of Electrical and Electronics Engineers (IEEE), 2003, 1133-1136

Skup
IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society

Mjesto i datum
Cancún, Meksiko, 17.09.2003. - 21.09.2003

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Unsupervised classification; Multispectral imaging; Neural networks; Early tumor detection;

Sažetak
The unsupervised classification algorithm called Lagrange Constraint Neural Network (LCNN) has been successfully applied to the sub-pixel multi-spectral remote sensing, [25]. Here, we apply the LCNN to the early breast cancer detection using two-color mid and long infrared images of the breast. This could be a new paradigm shift that enabled smart neural network algorithm to sort out the underlying malignant heat sources for physician diagnoses. The non-intrusive 2-color passive infrared imaging that could be repeated for record track with no radiation hazard seems to be alternative paradigm shift for the first-line screening against breast cancer. The sub-pixel super-resolution capability of the remote sensing is equivalent to the submilimeter scaling of the close-up breast imaging for the vascular and the angiogenesis effects. We demonstrate the potential benefit of the multi-color mid & long infrared imaging capable for detecting the abnormal under-skin thermal textures as well as stage-zero detection of the ductal carcinoma in situ.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Szu, Harold; Kopriva, Ivica; Hoekstra, Phil; Diakides, Nicholas; Diakides, Mary; Buss, James; Lupo, Jasper;
Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion // Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society
Cancún, Meksiko: Institute of Electrical and Electronics Engineers (IEEE), 2003. str. 1133-1136 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Szu, H., Kopriva, I., Hoekstra, P., Diakides, N., Diakides, M., Buss, J., Lupo, J. & (2003) Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion. U: Proceedings of the IEEE 25th Annual International Conference of the Engineering in Medicine and Biology Society.
@article{article, author = {Szu, Harold and Kopriva, Ivica and Hoekstra, Phil and Diakides, Nicholas and Diakides, Mary and Buss, James and Lupo, Jasper}, year = {2003}, pages = {1133-1136}, keywords = {Unsupervised classification, Multispectral imaging, Neural networks, Early tumor detection, }, title = {Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion}, keyword = {Unsupervised classification, Multispectral imaging, Neural networks, Early tumor detection, }, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Canc\'{u}n, Meksiko} }
@article{article, author = {Szu, Harold and Kopriva, Ivica and Hoekstra, Phil and Diakides, Nicholas and Diakides, Mary and Buss, James and Lupo, Jasper}, year = {2003}, pages = {1133-1136}, keywords = {Unsupervised classification, Multispectral imaging, Neural networks, Early tumor detection, }, title = {Early Tumor Detection by Multiple Infrared Unsupervised Neural Nets Fusion}, keyword = {Unsupervised classification, Multispectral imaging, Neural networks, Early tumor detection, }, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Canc\'{u}n, Meksiko} }




Contrast
Increase Font
Decrease Font
Dyslexic Font