Pregled bibliografske jedinice broj: 244519
Unsupervised Learning with Stochastic Gradient
Unsupervised Learning with Stochastic Gradient // Neurocomputing, 68 (2005), 130-160 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 244519 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Unsupervised Learning with Stochastic Gradient
Autori
Szu, Harold ; Kopriva, Ivica
Izvornik
Neurocomputing (0925-2312) 68
(2005);
130-160
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
stochastic optimization; Cauchy annealing; blind source separation; Helmholtz free energy
Sažetak
A stochastic gradient is formulated based on deterministic gradient augmented with Cauchy simulated annealing capable to reach a global minimum with a convergence speed significantly faster then when simulated annealing is used alone. In order to solve space-time variant inverse problems known as blind source separation, a novel Helmholtz free energy contrast function, , with imposed thermodynamics constraint at a constant temperature T0 was introduced generalizing the Shannon maximum entropy S of the closed systems to the open systems having non-zero input-output energy exchange E. Here only the input data vector was known while source vector and mixing matrix were unknown. A stochastic gradient was successfully applied to solve inverse space-variant imaging problems on a concurrent pixel-by-pixel basis with the unknown mixing matrix (imaging point spread function) varying from pixel to pixel.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivica Kopriva
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus