Pregled bibliografske jedinice broj: 240008
A subshape spectrum for compacta
A subshape spectrum for compacta // Glasnik matematički, 40(60) (2005), 2; 347-384 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 240008 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A subshape spectrum for compacta
Autori
Uglešić, Nikica ; Červar, Branko
Izvornik
Glasnik matematički (0017-095X) 40(60)
(2005), 2;
347-384
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
compactum; ANR; inverse sequence; limit; shape type; quasi-equivalence; S-equivalence
Sažetak
The countable families of categories and functors are constructed such that they may represent a \emph{; ; subshape spectrum}; ; \ for compacta in the following sense: Each of these categories classifies compact ANR's as the homotopy category does ; the classification of compacta by the "finest"\ of these categories coincides with the shape type classification ; moreover, the finest category contains a subcategory which is isomorphic to the shape category ; there exists a functor of the shape category to each of these categories, as well as of a \textquotedblleft finer\textquotedblright\ category to a \textquotedblleft coarser\textquotedblright\ one ; the functors commute according to the indices. Further, a few applications of this \textquotedblleft subshape spectrum theory\textquotedblright\ are demonstrated. It is shown that the $S^{; ; \ast }; ; $% -equivalence (a uniformization of the Marde\v{; ; s}; ; i\'{; ; c}; ; $S$-equivalence) and the $q^{; ; \ast }; ; $-equivalence (a uniformization of the Borsuk quasi-equivalence) admit the category characterizations within the subshape spectrum, and that the $q^{; ; \ast }; ; $-equivalence strictly implies the $S^{; ; \ast }; ; $-equivalence.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews