Pregled bibliografske jedinice broj: 238812
Remarks on Gauss-Winckler's and Stolarsky's inequalities
Remarks on Gauss-Winckler's and Stolarsky's inequalities // Utilitas Mathematica, 48 (1995), 233-241 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 238812 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Remarks on Gauss-Winckler's and Stolarsky's inequalities
Autori
Pečarić, Josip ; Varošanec, Sanja
Izvornik
Utilitas Mathematica (0315-3681) 48
(1995);
233-241
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Gauss-Winckler's inequality; Stolarsky's inequality; monotone function; absolute moment; convex function; concave function
Sažetak
K.B.Stolarsky proved the following result: If g is non-negative and non-increasing function on [0, 1], then for all positive numbers a and b we have: (a+b)g(0) \int_0^1 x^{; ; a+b-1}; ; g(x)dx \geq ab \int_0^1 x^{; ; a-1}; ; g(x)dx \int_0^1 x^{; ; b-1}; ; g(x)dx. In this paper we give simple connections between these results and the well-known Gauss-Winckler's inequality which states: Let Q:[0, \infty)->[0, 1] be a non-decreasing function such that Q(0)=0 and lim_{; ; x->\infty}; ; Q(x)=1. If Q' is continuous and non-increasing, then ((m+1)v_m)^1/m \leq ((r+1)v_r)^1/r for m\leq r, where v_m=\int_0^\infty x^m dQ(x).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews