Pregled bibliografske jedinice broj: 238236
A characterization of Brownian motion on Sierpinski spaces
A characterization of Brownian motion on Sierpinski spaces // Seminar on Stochastic Processes, 1991 / Cinlar, E. ; Chung, K.L. ; Sharpe, M.J. (ur.).
Boston : Basel : Berlin: Birkhäuser, 1992. str. 233-243
CROSBI ID: 238236 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A characterization of Brownian motion on Sierpinski spaces
Autori
Vondraček, Zoran
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Seminar on Stochastic Processes, 1991
Urednik/ci
Cinlar, E. ; Chung, K.L. ; Sharpe, M.J.
Izdavač
Birkhäuser
Grad
Boston : Basel : Berlin
Godina
1992
Raspon stranica
233-243
ISBN
0-8176-3628-5
Ključne riječi
Brownian motion on Sierpinski spaces, time-change. exit distributions. harmonic functions for Brownian motion, multidimensional analogues of the Sierpinski gasket
Sažetak
Let $K$ denote the Sierpinski gasket. The natural boundary of $K$ is formed by vertices $a\sb 1$, $a\sb 2$, $a\sb 3$ of the smallest triangle containing $K$. Let $(X\sb t, P\sp x)$ be a Brownian motion on $K\sp 0=K\backslash\{; ; ; a\sb 1, a\sb 2, a\sb 3\}; ; ; $ killed upon hitting the boundary. Let $(Y\sb t, Q\sp x)$ be any diffusion on $K\sp 0$ having the same exit distributions as $X$: $$P\sp x(X\sb{; ; ; \zeta-}; ; ; =a\sb j)=Q\sp x(Y\sb{; ; ; \tilde\zeta}; ; ; =a\sb j)$$ for $j=1, 2, 3$ and for all $x\in K\sp 0$ (where $\zeta$ and $\tilde\zeta$ are corresponding lifetimes). It is proved that $Y$ is a time-change of $X$, thus showing that harmonic functions for Brownian motion on the gasket completely determine the potential theory. Results are proven for Sierpinski spaces, multidimensional analogues of the Sierpinski gasket.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zoran Vondraček
(autor)