Pregled bibliografske jedinice broj: 235438
Finite 2-Groups with No Normal Elementary Abelian Subgroups of Order 8
Finite 2-Groups with No Normal Elementary Abelian Subgroups of Order 8 // Journal of Algebra, 246 (2001), 951-961 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 235438 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finite 2-Groups with No Normal Elementary Abelian Subgroups of Order 8
Autori
Janko, Zvonimir
Izvornik
Journal of Algebra (0021-8693) 246
(2001);
951-961
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
elementary abelian group; normal subgroup; metacyclic group; dihedral group; Frattini subgroup.
Sažetak
In this paper we give a relatively short proof of a stronger Ustjuzaninov's result.For example, in the case where G/N is isomorphic to D_8, we shall determine completely the structure of N by showing first that N is either abelian or minimal nonabelian.In our proof the computations are reduced to a minimum.The proof is based on a method of "pushing up" normal metacyclic subgroups of G combined with a very detailed knowledge of Aut(C_4 x C_4).We also note that our proof of the 4-generator theorem is character-free, i.e., it is completely elementary.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus