Pregled bibliografske jedinice broj: 235395
Imaging and analysis of nanowires
Imaging and analysis of nanowires // Microscopy Research and Technique, 64 (2004), 373-389 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 235395 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Imaging and analysis of nanowires
Autori
Bell, D. C. ; Wu, Y. ; Barrelet, C. J. ; Gradečak, S. ; Xiang, J. ; Timko, B. P. ; Lieber, C. M.
Izvornik
Microscopy Research and Technique (1059-910X) 64
(2004);
373-389
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
HRTEM; STEM; microanalysis; nanotechnology
Sažetak
We used vapor-liquid-solid (VLS) methods to synthesize discrete single-element semiconductor nanowires and multicomposition nanowire heterostructures, and then characterized their structure and composition using high-resolution electron microscopy (HRTEM) and analytical electron microscopy techniques. Imaging nanowires requires the modification of the established HRTEM imaging procedures for bulk material to take into consideration the effects of finite nanowire width and thickness. We show that high-resolution atomic structure images of nanowires less than 6 nm in thickness have lattice streaking due to the finite crystal lattice in two dimensions of the nanowire structure. Diffraction pattern analysis of nanowires must also consider the effects of a finite structure producing a large reciprocal space function, and we demonstrate that the classically forbidden 1/3 {; ; 422}; ; reflections are present in the [111] zone axis orientation of silicon nanowires due to the finite thickness and lattice plane edge effects that allow incomplete diffracted beam cancellation. If the operating conditions are not carefully considered, we found that HRTEM image delocalization becomes apparent when employing a field emission transmission electron microscope (TEM) to image nanowires and such effects have been shown to produce images of the silicon lattice structure outside of the nanowire itself. We show that pseudo low-dose imaging methods are effective in reducing nanowire structure degradation caused by electron beam irradiation. We also show that scanning TEM (STEM) with energy dispersive X-ray microanalysis (EDS) is critical in the examination of multicomponent nanowire heterostructures
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Kemija
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series