Pregled bibliografske jedinice broj: 234838
Generalization of the Kantorovich type operator inequalities via grand Furuta inequality
Generalization of the Kantorovich type operator inequalities via grand Furuta inequality // Mathematical Inequalities & Applications, 9 (2006), 3; 495-510 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 234838 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generalization of the Kantorovich type operator inequalities via grand Furuta inequality
Autori
Mićić, Jadranka ; Pečarić, Josip
Izvornik
Mathematical Inequalities & Applications (1331-4343) 9
(2006), 3;
495-510
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Operator order; chaotic order; Kantorovich inequality; Furuta inequality; grand Furuta inequality
Sažetak
In this note we show the characterization of the $\delta$-order by means of a generalized Kantorovich constant via Grand Furuta inequality, which is an extension result of that from M.Fujii, E.Kamei, Y.Seo, {; ; \it Kantorovich type operator inequalities via grand Furuta inequality}; ; , Sci.\ Math., {; ; \bf 3}; ; (2000), 263--272. Among other, we show the following characterization of the $\delta$-order: Let $A, B$ be positive invertible operators on a Hilbert space $H$ satisfying $M I \geq A \geq m I >0$ and $N I \geq B \geq n I>0$. Then the following statements are mutually equivalent for each $\delta \in [0, 1]$: {; ; \rm (i)}; ; \quad $A^{; ; \delta}; ; \geq B^{; ; \delta}; ; $. {; ; \rm (ii)}; ; \quad $K(n^r, N^r, 1+\frac{; ; p- \delta}; ; {; ; r}; ; , 1+\frac{; ; q- \delta}; ; {; ; r}; ; )A^q \geq B^p$ for all $p > \delta$, $q > \delta$ and $r > \delta$. {; ; \rm (iii)}; ; \quad $\overline{; ; K}; ; (m^r, M^r, 1+\frac{; ; q- \delta}; ; {; ; r}; ; , 1+\frac{; ; p- \delta}; ; {; ; r}; ; )A^q \geq B^p$ for all $p > \delta$, $q > \delta$ and $r > \delta$ where the case $\delta=0$ means the chaotic order $\log A \geq \log B$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus