Pregled bibliografske jedinice broj: 234377
Elements of order at most 4 in finite 2-groups, 2
Elements of order at most 4 in finite 2-groups, 2 // Journal of Group Theory, 8 (2005), 683-686 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 234377 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Elements of order at most 4 in finite 2-groups, 2
Autori
Janko, Zvonimir
Izvornik
Journal of Group Theory (1433-5883) 8
(2005);
683-686
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
finite group; p-group; extraspecial group; semidihedral group
Sažetak
Let G be a finite p-group. We show that if Omega_2(G) is an extraspecial group then Omega_2(G)=G (Theorem 1). If we assume only that Omega*_2(G) (the subgroup generated by elements of order p^2) is an extraspecial group, then the situation is more complicated. If p=2, then either Omega*_2(G)=G or G is a semidihedral group of order 16 (Theorem 2). If p>2, then we can only show that Omega*_2(G)=H_p(G)(Theorem 3).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews