Pregled bibliografske jedinice broj: 233661
A basis of the basic sl(3, C)~ -module
A basis of the basic sl(3, C)~ -module // Communications in Contemporary Mathematics, 3 (2001), 4; 593-614 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 233661 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A basis of the basic sl(3, C)~ -module
Autori
Meurman, Arne ; Primc, Mirko
Izvornik
Communications in Contemporary Mathematics (0219-1997) 3
(2001), 4;
593-614
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
affine Lie algebras; vertex operator algebras; colored partitions
Sažetak
J.~Lepowsky and R.~L.~Wilson initiated the approach to combinatorial Rogers-Ramanujan type identities via the vertex operator constructions of representations of affine Lie algebras. In this approach the first new combinatorial identities were discovered by S. Capparelli through the construction of the level 3 standard $A^{; ; (2)}; ; _2$-modules. We obtained several infinite series of new combinatorial identities through the construction of all standard $A^{; ; (1)}; ; _1$-modules ; the identities associated to the fundamental modules coincide with the two Capparelli identities. In this paper we extend our construction to the basic $A^{; ; (1)}; ; _2$-module and, by using the principal specialization of the Weyl-Kac character formula, we obtain a Rogers-Ramanujan type combinatorial identity for colored partitions. The new combinatorial identity indicates the next level of complexity which one should expect in Lepowsky-Wilson's approach for affine Lie algebras of higher ranks, say for $A^{; ; (1)}; ; _n$, $n\geq 2$, in a way parallel to the next level of complexity seen when passing from the Rogers-Ramanujan identities (for modulus $5$) to the Gordon identities for odd moduli $\geq 7$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037125
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Mirko Primc
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews