Pregled bibliografske jedinice broj: 227071
On Feurbach's Theorem and a Pencil of Circles in I_2
On Feurbach's Theorem and a Pencil of Circles in I_2 // Konstruktive Geometrie Balatonföldvar : abstracts
Balatonföldvar, 2005. str. 7-7 (predavanje, međunarodna recenzija, sažetak, stručni)
CROSBI ID: 227071 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Feurbach's Theorem and a Pencil of Circles in I_2
Autori
Beban-Brkić, Jelena ; Kolar-Šuper, Ružica ; Kolar-Begović, Zdenka ; Volenec, Vladimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, stručni
Izvornik
Konstruktive Geometrie Balatonföldvar : abstracts
/ - Balatonföldvar, 2005, 7-7
Skup
Konstruktive Geometrie Balatonföldvar
Mjesto i datum
Balatonföldvár, Mađarska, 05.09.2005. - 09.09.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
isotropic plane; circle; standard triangle
Sažetak
A trinagle in I_2 is called allowable if no one of its sides is isotropic. Each allowable triangle in an isotropic plane can be set in a standard position, in which it is possible to prove analitycally in a simplified way the geometric properties by means of the algebraic theory. Using that very method for adapting the well-known the well-known Euler and Feurbach theorems for the isotropic plane, the connection among the circumcircle, Euler circle, tangential circumcircle, and the polar circle of a given allowable triangle will be shown.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0245003
Ustanove:
Fakultet za odgojne i obrazovne znanosti, Osijek
Profili:
Zdenka Kolar-Begović
(autor)
Vladimir Volenec
(autor)
Jelka Beban-Brkić
(autor)
Ružica Kolar-Šuper
(autor)