Pregled bibliografske jedinice broj: 224172
Ritz value estimates and applications in Mathematical Physics
Ritz value estimates and applications in Mathematical Physics, 2005., doktorska disertacija, Fachbereich Mathematik, Hagen
CROSBI ID: 224172 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Ritz value estimates and applications in Mathematical Physics
Autori
Grubišić, Luka
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Fachbereich Mathematik
Mjesto
Hagen
Datum
03.05
Godina
2005
Stranica
174
Mentor
Veselić, Krešimir
Ključne riječi
Eigenvalue ; Eigenvector ; Elliptic-Operator ; Sylvester-Equation
Sažetak
This thesis is about presenting a (new) general theory on Ritz value spectral approximations for elliptic self-adjoint operators. These results extend the known Davis--Kahan estimates to operators defined as quadratic forms. As a first application, we have considered the problem of computing rigorous spectral estimates for problems of the large coupling limit (for both eigenvalues and spectral families). In this context two problem classes have been identified: the regular case which encompasses problems from the elasticity theory (Arch/Curved Rod, Lame/Stokes) and the second class of problems (Schroedinger/Dirichlet, Helmholtz/Dirichlet) which does not satisfy the new regularity requirement. As a second class of problems we have studied the spectral finite element approximations for operators which are not H2 regular.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037122
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb