Pregled bibliografske jedinice broj: 215435
H-measures applied to parabolic equations
H-measures applied to parabolic equations // Frontiers of applied analysis / I. Fonseca i dr. (ur.).
Pittsburgh (PA), 2005. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 215435 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
H-measures applied to parabolic equations
Autori
Lazar, Martin ; Antonić, Nenad
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Frontiers of applied analysis
/ I. Fonseca i dr. - Pittsburgh (PA), 2005
Skup
Frontiers of applied analysis
Mjesto i datum
Pittsburgh (PA), Sjedinjene Američke Države, 08.09.2005. - 10.09.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
H-measure; parabolic equations
Sažetak
Since their introduction, H-measures have been mostly used in problems related to hyperbolic equations and systems. In this study we give an attempt to apply the H-measure theory to parabolic equations. Through a number of examples we try to present how the differences between parabolicity and hyperbolicity reflect in the theory. To clarify the problem, we start with the simplest example - the heat equation. It is shown that, unlike to hyperbolic equations, there is no propagation of energy (H-measure) along the characteristics. In order to avoid the trivial problem in which H-measure turns out to be zero, we introduce a new term on the right hand side of the equation. To be more precisely, we study the sequence of problems: $$ \eqalign{; ; ; ; ; u_n' - \Delta u_n &= - \dv f_n \cr u_n(0) &= u_n^0 , \cr }; ; ; ; ; $$ where $f_n \dscon 0$ in $\Ldl\Rdpj$ The goal is to obtain the relation between the H-measure associated to the sequence $f_n$, and the H-measure associated to $\nabla u_n$, where $u_n$ may be the unknown solution.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037101
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb