Pregled bibliografske jedinice broj: 21061
The Characterization of Low Pass Filters and some Basic Properties of Wavelets
The Characterization of Low Pass Filters and some Basic Properties of Wavelets // The journal of fourier analysis and applications, 5 (1999), 5; 495-521 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 21061 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Characterization of Low Pass Filters and some Basic Properties of Wavelets
Autori
Papadakis, Manos ; Šikić, Hrvoje ; Weiss, Guido
Izvornik
The journal of fourier analysis and applications (1069-5869) 5
(1999), 5;
495-521
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Sažetak
The ``classical'' wavelets, those $psi in L^2 ({ f R})$ such that
${ 2^{j/2} psi (2^{j} x - k)}$, $j,k in { f Z}$, is an
orthonormal basis for $L^2({ f R})$, are known to be characterized
by two simple equations satisfied by $hat{psi}$. The ``multiresolution
analysis'' wavelets (briefly, the MRA wavelets) have a simple
characterization and so do the scaling functions that produce these
wavelets. Only certain smooth classes of the low pass filters that are
determined by these scaling functions, however, appear to be
characterized in the literature (see Chapter 7 of cite{hw} for an account
of these matters). In this paper we present a complete characterization
of all these filters. This somewhat technical result does provide a
method for simple constructions of low pass filters whose only
smoothness assumption is a H"{o}lder condition at the origin. We also
obtain a characterization of all scaling sets and, in particular,
a description of all bounded scaling sets as well as a detailed description
of the class of scaling functions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037008
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Hrvoje Šikić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus