Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 205292

Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms


Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Regelja, Melita; Regelja, Hrvoje; Lončarić, Sven
Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms // Journal of chromatography, 1085 (2005), 74-85 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 205292 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms

Autori
Bolanča, Tomislav ; Cerjan-Stefanović, Štefica ; Regelja, Melita ; Regelja, Hrvoje ; Lončarić, Sven

Izvornik
Journal of chromatography (0021-9673) 1085 (2005); 74-85

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural networks ; retention modelling ; inorganic cations ; ion chromatography

Sažetak
This paper describes development of artificial neural network retention model, which can be used for method development in variety of ion chromatographic applications. By using developed retention model it is possible both to improve performance characteristic of developed method and to speed up new method development by reducing unnecessary experimentation. Multy layered feed forward neural network has been used to model retention behaviour of void peak, lithium, sodium, ammonium, potassium, magnesium, calcium, strontium and barium in relation with the eluent flow rate and concentration of methasulphonic acid in eluent. The probability of finding the global minimum and fast convergence at the same time were enhanced by applying a two phase training procedure. The developed two phase training procedure consists of both first and second order training. Several training algorithms were applied and compared, namely: backpropagation, delta-bar-delta, quick propagation, conjugate gradient, quasi Newton and Levenberg- Marquardt. It is shown that the optimized two phase training procedure enables fast convergence and avoids problems arisen from the fact that every new weight initialization can be regarded as a new starting position and yield irreproducible neural network if only second order training is applied. Activation function, number of hidden layer neurons and number of experimental data points used for training set were optimized in order to insure good predictive ability with respect to speeding up retention modelling procedure by reducing unnecessary experimental work. The predictive ability of optimized neural networks retention model was tested by using several statistical tests. This study shows that developed artificial neural network are very accurate and fast retention modelling tool applied to model varied inherent non-linear relationship of retention behaviour with respect to mobile phase parameters.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
0125016

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb


Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Regelja, Melita; Regelja, Hrvoje; Lončarić, Sven
Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms // Journal of chromatography, 1085 (2005), 74-85 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Cerjan-Stefanović, Š., Regelja, M., Regelja, H. & Lončarić, S. (2005) Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms. Journal of chromatography, 1085, 74-85.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Regelja, Melita and Regelja, Hrvoje and Lon\v{c}ari\'{c}, Sven}, year = {2005}, pages = {74-85}, keywords = {artificial neural networks, retention modelling, inorganic cations, ion chromatography}, journal = {Journal of chromatography}, volume = {1085}, issn = {0021-9673}, title = {Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms}, keyword = {artificial neural networks, retention modelling, inorganic cations, ion chromatography} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Regelja, Melita and Regelja, Hrvoje and Lon\v{c}ari\'{c}, Sven}, year = {2005}, pages = {74-85}, keywords = {artificial neural networks, retention modelling, inorganic cations, ion chromatography}, journal = {Journal of chromatography}, volume = {1085}, issn = {0021-9673}, title = {Development of an inorganic cations retention model in ion chromatography by means of artificial neural networks with different two phase training algorithms}, keyword = {artificial neural networks, retention modelling, inorganic cations, ion chromatography} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE





Contrast
Increase Font
Decrease Font
Dyslexic Font