Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 205180

Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions


Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Novič, Milko
Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions // Chromatographia, 61 (2005), 181-187 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 205180 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions

Autori
Bolanča, Tomislav ; Cerjan-Stefanović, Štefica ; Novič, Milko

Izvornik
Chromatographia (0009-5893) 61 (2005); 181-187

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Column liquid chromatography; Ion chromatography; Criteria functions; Empirical retention modelling

Sažetak
This work focuses on problems regarding empirical retention modelling and optimization of separation in ion chromatography. Influences of eluent flow rate and concentration of eluent competing ion (OH-) on separation of seven inorganic anions (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and phosphate) were investigated. Artificial neural networks and multiple linear regression retention models in combination with several criteria functions were used and compared in global optimization process. It can be seen that general recommendations for optimization of separation in ion chromatography is application of chromatography exponential function criterion in combination with artificial neural networks retention model.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
0125016

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb


Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan-Stefanović, Štefica; Novič, Milko
Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions // Chromatographia, 61 (2005), 181-187 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Cerjan-Stefanović, Š. & Novič, M. (2005) Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions. Chromatographia, 61, 181-187.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Novi\v{c}, Milko}, year = {2005}, pages = {181-187}, keywords = {Column liquid chromatography, Ion chromatography, Criteria functions, Empirical retention modelling}, journal = {Chromatographia}, volume = {61}, issn = {0009-5893}, title = {Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions}, keyword = {Column liquid chromatography, Ion chromatography, Criteria functions, Empirical retention modelling} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan-Stefanovi\'{c}, \v{S}tefica and Novi\v{c}, Milko}, year = {2005}, pages = {181-187}, keywords = {Column liquid chromatography, Ion chromatography, Criteria functions, Empirical retention modelling}, journal = {Chromatographia}, volume = {61}, issn = {0009-5893}, title = {Application of Artificial Neural Network and Multiple Linear Regression Retention Models for Optimization of Separation in Ion Chromatography by Using Several Criteria Functions}, keyword = {Column liquid chromatography, Ion chromatography, Criteria functions, Empirical retention modelling} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font