Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 203617

Use of neural network to evaluate rebar corrosion in continental environment


Ukrainczyk, Neven; Ukrainczyk, Velimir
Use of neural network to evaluate rebar corrosion in continental environment // International Conference on Construction Materials : Performance, Innovations and Structural Implications : CONMAT'05 : Book of Abstracts / Banthia, N ; Uomoto, T. ; Bentur, A ; Shah, S. P. (ur.).
Vancouver: The University of British Columbia, 2005. str. 268-268 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 203617 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Use of neural network to evaluate rebar corrosion in continental environment

Autori
Ukrainczyk, Neven ; Ukrainczyk, Velimir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
International Conference on Construction Materials : Performance, Innovations and Structural Implications : CONMAT'05 : Book of Abstracts / Banthia, N ; Uomoto, T. ; Bentur, A ; Shah, S. P. - Vancouver : The University of British Columbia, 2005, 268-268

Skup
International Conference on Construction Materials : Performance, Innovations and Structural Implications (3 ; 2005)

Mjesto i datum
Vancouver, Kanada, 22.08.2005. - 24.08.2005

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
rebar corrosion; continental climate; damages categorization; simulation; classification artificial neural network

Sažetak
Data on the effects of the structure and properties of concrete onto the degree of damage caused by steel corrosion have been gathered on seven concrete bridge structures in Croatian moderate continental climate. The damages were classified into five categories based on the type of necessary remedial works. The artificial neural network for feature categorization was used as tool for classification of damage and prediciton of damage degree. It was demonstrated that the developed model could predict degree of damage confidently within the observed period. The model is able to recognize and evaluate the effect of individual parameters on the damages. Interactions and sensitivites among parameters were investigated. The developed model could be useful for planning the maintenance of investigated strucutres and design of remedial works.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Kemijsko inženjerstvo

Napomena
Puni tekst rada objavljen na CD-u.



POVEZANOST RADA


Projekti:
0125002
0082205

Ustanove:
Građevinski fakultet, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Neven Ukrainczyk (autor)

Avatar Url Velimir Ukrainczyk (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Ukrainczyk, Neven; Ukrainczyk, Velimir
Use of neural network to evaluate rebar corrosion in continental environment // International Conference on Construction Materials : Performance, Innovations and Structural Implications : CONMAT'05 : Book of Abstracts / Banthia, N ; Uomoto, T. ; Bentur, A ; Shah, S. P. (ur.).
Vancouver: The University of British Columbia, 2005. str. 268-268 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ukrainczyk, N. & Ukrainczyk, V. (2005) Use of neural network to evaluate rebar corrosion in continental environment. U: Banthia, N., Uomoto, T., Bentur, A. & Shah, S. (ur.)International Conference on Construction Materials : Performance, Innovations and Structural Implications : CONMAT'05 : Book of Abstracts.
@article{article, author = {Ukrainczyk, Neven and Ukrainczyk, Velimir}, year = {2005}, pages = {268-268}, keywords = {rebar corrosion, continental climate, damages categorization, simulation, classification artificial neural network}, title = {Use of neural network to evaluate rebar corrosion in continental environment}, keyword = {rebar corrosion, continental climate, damages categorization, simulation, classification artificial neural network}, publisher = {The University of British Columbia}, publisherplace = {Vancouver, Kanada} }
@article{article, author = {Ukrainczyk, Neven and Ukrainczyk, Velimir}, year = {2005}, pages = {268-268}, keywords = {rebar corrosion, continental climate, damages categorization, simulation, classification artificial neural network}, title = {Use of neural network to evaluate rebar corrosion in continental environment}, keyword = {rebar corrosion, continental climate, damages categorization, simulation, classification artificial neural network}, publisher = {The University of British Columbia}, publisherplace = {Vancouver, Kanada} }




Contrast
Increase Font
Decrease Font
Dyslexic Font