Pregled bibliografske jedinice broj: 199553
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns // Asymptotic analysis, 41 (2005), 3-4; 331-363 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 199553 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns
Autori
Raguž, Andrija
Izvornik
Asymptotic analysis (0921-7134) 41
(2005), 3-4;
331-363
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
young measures; relaxation; gamma convergence
Sažetak
In this paper we study asymptotic behavior as $\vep\str 0$ of Ginzburg-Landau functional $$ I_{; ; \vep}; ; (v):=\int_{; ; \Omega}; ; \Big({; ; \vep}; ; ^2 v''^2(s)+W(v'(s))+a(s)(v(s)+g(s))^2\Big)ds. $$ Our consideration follows the approach introduced in the original paper~\cite{; ; AM}; ; by G.~Alberti and S.~M\"uller, where the case $g=0$ was studied. We show that their program can be modified in the case of functional $I_{; ; \vep}; ; $: we define suitable relaxation of $I_{; ; \vep}; ; $ and prove a $\Gamma$-convergence result in the topology of the so-called Young measures on micropatterns. Moreover, we identify a unique minimizing measure for the functional in the limit, which is the unique translation-invariant measure supported on the orbit of a particular periodic sawtooth function having minimal period and slope dependent on a derivative of $g$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0036031
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Andrija Raguž
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus