Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 199553

Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns


Raguž, Andrija
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns // Asymptotic analysis, 41 (2005), 3-4; 331-363 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 199553 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns

Autori
Raguž, Andrija

Izvornik
Asymptotic analysis (0921-7134) 41 (2005), 3-4; 331-363

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
young measures; relaxation; gamma convergence

Sažetak
In this paper we study asymptotic behavior as $\vep\str 0$ of Ginzburg-Landau functional $$ I_{; ; \vep}; ; (v):=\int_{; ; \Omega}; ; \Big({; ; \vep}; ; ^2 v''^2(s)+W(v'(s))+a(s)(v(s)+g(s))^2\Big)ds. $$ Our consideration follows the approach introduced in the original paper~\cite{; ; AM}; ; by G.~Alberti and S.~M\"uller, where the case $g=0$ was studied. We show that their program can be modified in the case of functional $I_{; ; \vep}; ; $: we define suitable relaxation of $I_{; ; \vep}; ; $ and prove a $\Gamma$-convergence result in the topology of the so-called Young measures on micropatterns. Moreover, we identify a unique minimizing measure for the functional in the limit, which is the unique translation-invariant measure supported on the orbit of a particular periodic sawtooth function having minimal period and slope dependent on a derivative of $g$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
0036031

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Andrija Raguž (autor)


Citiraj ovu publikaciju:

Raguž, Andrija
Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns // Asymptotic analysis, 41 (2005), 3-4; 331-363 (međunarodna recenzija, članak, znanstveni)
Raguž, A. (2005) Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns. Asymptotic analysis, 41 (3-4), 331-363.
@article{article, author = {Ragu\v{z}, Andrija}, year = {2005}, pages = {331-363}, keywords = {young measures, relaxation, gamma convergence}, journal = {Asymptotic analysis}, volume = {41}, number = {3-4}, issn = {0921-7134}, title = {Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns}, keyword = {young measures, relaxation, gamma convergence} }
@article{article, author = {Ragu\v{z}, Andrija}, year = {2005}, pages = {331-363}, keywords = {young measures, relaxation, gamma convergence}, journal = {Asymptotic analysis}, volume = {41}, number = {3-4}, issn = {0921-7134}, title = {Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns}, keyword = {young measures, relaxation, gamma convergence} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font